Abstract
Currently, the ability to analyze large-scale whole genome sequence (WGS) data is limited due to both the size of the data and the inability of many existing tools to scale. To address this challenge, we use data “tiling” to efficiently partition whole genome sequences into smaller segments resulting in a simple numeric matrix of small integers. This lossless representation is particularly suitable for machine learning (ML) models. As an example of the benefits of tiling, we showcase results from tiled data as part of the Artificial Intelligence for Alzheimer’s Disease (AI4AD) consortium. AI4AD is a coordinated initiative to develop transformative AI approaches for high throughput analysis of next generation sequencing and related imaging, AD biomarker, and cognitive data. The collective effort integrates imaging, genomic, biomarker, and cognitive data to address fundamental barriers in AD prevention and drug discovery. One of the project’s initial aims is to discover new genetic signatures in WGS data that can be used to understand AD risk and progression in conjunction with imaging, biomarker and cognitive data. We tiled and analyzed 15,000+ genomes from the Alzheimer’s Disease Sequencing Project (ADSP) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). We tile 11,762 genomes, a subset of the release which does not include family-based datasets (AD Cases: 4,983, age range: 50-90 years, mean age: 73.8 years). We illustrate the use of tiled data in ML classification methods to predict phenotypes. Specifically, we identify and prioritize tile variants/genetic variants that are possible genetic signatures for AD. The model shows added predictive value from variants of genes previously found to be associated with AD risk, age of onset, neurofibrillary tangle measurements, and other AD-related traits–including the APOE variant (rs429358).
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work was funded in part by NIA grant U01 AG068057 to the AI4AD Consortium. Data collection for ADNI was also supported by the NIA and a combination of public and private funders. ADSP data collection was supported by the NIA (see supplementary materials for detailed acknowledgements for NIAGADS, ADSP and ADNI.)
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The University of Southern California Institutional Review Board (IRB) gave ethical approval for this work.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study to be obtained from NIAGADS (https://www.niagads.org/) DOI in process.
Data Availability
All data produced in the present study to be obtained from NIAGADS (https://www.niagads.org/) DOI in process.