Abstract
Background Preterm birth (PTB) is the leading cause of infant mortality and follows multiple biological pathways, many of which are poorly understood. Some PTBs result from medically indicated labor following complications from hypertension and/or diabetes, while many others are spontaneous with unknown causes. Previously, investigation of potential risk factors has been limited by lack of data on maternal medical history and the difficulty of classifying PTBs as indicated or spontaneous. Here, we leverage electronic health record (EHR) data (patient health information including demographics, diagnoses, and medications) and a supplemental curated pregnancy database to overcome these limitations. Novel associations may provide new insight into the pathophysiology of PTB as well as help identify individuals who would be at risk of PTB.
Methods We quantified associations between maternal diagnoses and preterm birth using logistic regression controlling for maternal age and socioeconomic factors within a University of California, San Francisco (UCSF), EHR cohort with 10,643 births (nterm = 9692, nspontaneous_preterm = 449, nindicated_preterm = 418) and maternal pre-conception diagnosis phenotypes derived from International Classification of Diseases (ICD) 9 and 10 codes.
Results Eighteen conditions significantly and robustly (False Discovery Rate (FDR)<0.05) associated with PTBs compared to term. We discovered known (hypertension, diabetes, and chronic kidney disease) and less established (blood, cardiac, gynecological, and liver conditions) associations. Type 1 diabetes was the most significant overall association (adjusted p = 1.6×10-14, adjusted OR = 7 (95% CI 5, 12)), and the odds ratios for the significant phenotypes ranged from 3 to 13. We further carried out analysis stratified by spontaneous vs. indicated PTB. No phenotypes significantly associated with spontaneous PTB; however, the results for indicated PTB largely recapitulated the phenotype associations with all PTBs.
Conclusions Our study underscores the limitations of approaches that combine indicated and spontaneous births together. When combined, significant associations were almost entirely driven by indicated PTBs, although our spontaneous and indicated groups were of a similar size. Investigating the spontaneous population has the potential to reveal new pathways and understanding of the heterogeneity of PTB.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
We would like to acknowledge the T32 institutional training grant (5 T32DE007306) and March of Dimes for funding.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study was approved by the Institutional Review Board of University of California San Francisco (#17-22929).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
Overall preterm, indicated preterm, and spontaneous preterm diagnosis association results are in Supplementary Files 1-3, respectively. To maintain patient de-identification, exact counts, odds ratios, and p-values are redacted for diagnoses affecting >10 people in Supplementary Files 1-3. The custom code/software we generated are available in the repository stratified_PTB_association_study available here [https://github.com/hanmochturt/stratified_PTB_association_study] This contains instructions for OMOP EHR data queries and all of the code for patient filtering, diagnosis aggregation, overall PTB association analysis, indicated and spontaneous PTB association analysis, healthcare time trajectory analysis, robustness testing, and figure creation.
5 List of Abbreviations
- EHR
- Electronic Health Record
- ICD
- International Classification of Diseases
- PTB
- Preterm Birth
- SES
- Socioeconomic status
- UCSF
- University of California, San Francisco