Abstract
Background Headache frequency, defined as the number of days with any headache in a month (or four weeks), remains a key parameter in the evaluation of treatment response to migraine preventive medications. However, due to the variations and inconsistencies in documentation by clinicians, significant challenges exist to accurately extract headache frequency from the electronic health record (EHR) by traditional natural language processing (NLP) algorithms.
Methods This was a retrospective cross-sectional study with human subjects identified from three tertiary headache referral centers-Mayo Clinic Arizona, Florida, and Rochester. All neurology consultation notes written by more than 10 headache specialists between 2012 to 2022 were extracted and 1915 notes were used for model fine-tuning (90%) and testing (10%). We employed four different NLP frameworks: (1) ClinicalBERT (Bidirectional Encoder Representations from Transformers) regression model (2) Generative Pre-Trained Transformer-2 (GPT-2) Question Answering (QA) Model zero-shot (3) GPT-2 QA model few-shot training fine-tuned on Mayo Clinic notes; and (4) GPT-2 generative model few-shot training fine-tuned on Mayo Clinic notes to generate the answer by considering the context of included text.
Results The GPT-2 generative model was the best-performing model with an accuracy of 0.92[0.91 – 0.93] and R2 score of 0.89[0.87, 0.9], and all GPT2-based models outperformed the ClinicalBERT model in terms of the exact matching accuracy. Although the ClinicalBERT regression model had the lowest accuracy 0.27[0.26 – 0.28], it demonstrated a high R2 score 0.88[0.85, 0.89], suggesting the ClinicalBERT model can reasonably predict the headache frequency within a range of ≤ ± 3 days, and the R2 score was higher than the GPT-2 QA zero-shot model or GPT-2 QA model few-shot training fine-tuned model.
Conclusion We developed a robust model based on a state-of-the-art large language model (LLM)-a GPT-2 generative model that can extract headache frequency from EHR free-text clinical notes with high accuracy and R2 score. It overcame several challenges related to different ways clinicians document headache frequency that were not easily achieved by traditional NLP models. We also showed that GPT2-based frameworks outperformed ClinicalBERT in terms of accuracy in extracting headache frequency from clinical notes. To facilitate research in the field, we released the GPT-2 generative model and inference code with open-source license of community use in GitHub.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study is partially supported by NIH/NCI, U01 CA269264-01-1, Flexible NLP toolkit for automatic curation of outcomes for breast cancer patients.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The Mayo Clinic Institutional Review Board approved an exemption for this study, and written informed consent was not required.
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
All data produced in the present study are available upon reasonable request to the authors