Abstract
Introduction The cerebellum, most known for its role in motor control, exerts a key role in cognition. Multiple lines of evidence across human functional, lesion and animal data point to a role of the cerebellum, in particular of Crus I, Crus II and Lobule VIIB, in cognitive function. However, whether cerebellar substrates pertaining to distinct facets of cognitive function exist is not known.
Methods We analyzed structural neuroimaging data from the Healthy Brain Network (HBN). Cerebellar parcellation was performed via a standard validated automated segmentation pipeline (CERES) with stringent visual quality check (n = 662 subjects retained from initial n = 1452). We used data-driven canonical correlation analyses (CCA) to examine regional gray matter volumetric (GMV) differences in association to cognitive function assessed with the NIH Toolbox Cognition Domain (NIH-TB). Our multivariate analyses accounted for psychopathology severity, age, sex, scan location and intracranial volume.
Results Multivariate CCA uncovered a significant correlation between two components entailing a latent cognitive canonical variate composed of NIH-TB subscales and the brain canonical variate (cerebellar regions’ GMV and intracranial volume, ICV). A bootstrapping and a permutation procedure ensured the results are statistically significant and the CCA model, stable. The identified components correspond to only partly shared cerebellar -cognitive function relationship with a first map encompassing cognitive flexibility (r=0.89) and speed of processing (r=0.65) associated with regional gray matter volume in Crus II (r=0.57) and Lobule X (r=0.59) and a second map including the Crus I (r=0.49) and Lobule VI (r=0.49) associated with cognitive control (r=-0.51). Working memory associations were similarly present in both these maps (Crus II, Lobule X, Crus I and Lobule VI) for the first (r=0.52) and second (r=0.51) component.
Discussion Our results show evidence in favor of structural sub-specialization in the cerebellum, independently of psychopathology contributions to cognitive function and brain structure. Overall, these findings highlight a prominent role for the human cerebellum in cognitive function for flexible and stable adaptive behavior.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
C.L received funding from the Bettencourt Schueller Foundation (CCA INSERM Bettencourt Program).
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The acquisition protocol was approved by the Chesapeake Institutional Review Board, is conducted following the Declaration of Helsinki for human research and is described elsewhere (Alexander et al., 2017).
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
data are available on request from the authors.