Abstract
Epidemiological application of chaos theory methods have uncovered the existence of chaotic markers in SARS-CoV-2’s epidemiological data, including low dimensional attractors with positive Lyapunov exponents, and evidence markers of a dynamics that is close to the onset of chaos for different regions. We expand on these previous works, performing a comparative study of United States of America (USA) and Canada’s COVID-19 daily hospital occupancy cases, applying a combination of chaos theory, machine learning and topological data analysis methods. Both countries show markers of low dimensional chaos for the COVID-19 hospitalization data, with a high predictability for adaptive artificial intelligence systems exploiting the recurrence structure of these attractors, with more than 95% R2 scores for up to 42 days ahead prediction. The evidence is favorable to the USA’s hospitalizations being closer to the onset of chaos and more predictable than Canada, the reasons for this higher predictability are accounted for by using topological data analysis methods.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This study did not receive any funding
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study used ONLY openly available human data that were originally located at in 2022-09-30: https://ourworldindata.org/covid-hospitalizations
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data produced are available online at: https://ourworldindata.org/covid-hospitalizations The download date set the last datapoint at 2022-09-30.