Abstract
Next-generation sequencing of circulating tumor DNA presents a promising approach to cancer diagnostics, complementing conventional tissue-based diagnostic testing by enabling minimally invasive serial testing and broad genomic coverage through a simple blood draw to maximize therapeutic benefit to patients. LiquidHALLMARK® is an amplicon-based next-generation sequencing assay developed for the genomic profiling of plasma-derived cell-free DNA. The comprehensive 80-gene panel profiles point mutations, insertions/deletions, copy number alterations, and gene fusions, and further detects oncogenic viruses (EBV and HBV) and microsatellite instability. Here, the analytical and clinical validation of the assay is reported. Analytical validation using reference genetic materials demonstrated a sensitivity of 99.38% for point mutations and 95.83% for insertions/deletions at 0.1% variant allele frequency (VAF), and a sensitivity of 91.67% for gene fusions at 0.5% VAF, with high specificity even at 0.1% VAF (99.11% per-base). The limit of detection for copy number alterations, EBV, HBV, and microsatellite instability were also empirically determined. Orthogonal comparison of EGFR variant calls made by LiquidHALLMARK and a reference allele-specific PCR method for 355 lung cancer specimens revealed an overall concordance of 93.80%, while external validation with cobas® EGFR Mutation Test v2 for 50 lung cancer specimens demonstrated an overall concordance of 84.00%, with a 100% concordance rate for EGFR variants above 0.4% VAF. Clinical application of LiquidHALLMARK in 1,592 consecutive patients demonstrated a high detection rate (74.8% alteration-positive in cancer samples) and broad actionability (50.0% of cancer samples harboring alterations with biological evidence for actionability). Among ctDNA-positive lung cancers, 72.5% harbored at least one biomarker with a guideline-approved drug indication. These results establish the high sensitivity, specificity, accuracy, and precision of the LiquidHALLMARK assay and supports its clinical application for blood-based genomic testing.
Competing Interest Statement
Jonathan Poh, Kao Chin Ngeow, Jing Shan Lim, Hao Chen, and Yukti Choudhury are employees of Lucence Diagnostics Pte Ltd, Singapore. Michelle Pek and Kian-Hin Tan are employees of Lucence Health Inc, Palo Alto, CA, USA.
Funding Statement
No external funding was received for this study.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Concord Hospital/SingHealth/National University Health System FSHIRB/06/0414 2018/3084
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
-