Abstract
Some countries have been crippled by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic while others have emerged with few infections and fatalities; the factors underscoring this macro-epidemiological variation is one of the mysteries of this global catastrophe. Variation in immune responses influence SARS-CoV-2 transmission and mortality, and factors shaping this variation at the country level, in addition to other socio-ecological drivers, may be important. Here, we construct spatially explicit Bayesian models that combine data on prevalence of endemic diseases and other socio-ecological characteristics to quantify patterns of confirmed deaths and cases across the globe before mass vaccination. We find that the prevalence of parasitic worms, human immunodeficiency virus and malaria play a surprisingly important role in predicting country-level SARS-CoV-2 patterns. When combined with factors such as population density, our models predict 63% (56-67) and 76% (69-81) of confirmed cases and deaths among countries, respectively. While our findings at this macro-scale are necessarily associative, they highlight a need for studies to consider factors, such as infection by other pathogens, on global SARS-CoV-2 dynamics. These relationships are vital for developing countries that already have the highest burden of endemic disease and are becoming the most affected by the SARS-CoV-2 pandemic.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This project was funded by the Australian Research Council
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Not applicable
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data will be available on github
https://github.com/nfj1380/covid19_macroecology/tree/master/plots