Abstract
Restrictive eligibility criteria for clinical trials may limit the generalizability of treatment effectiveness and safety to real-world patients. In this paper, we propose a machine learning approach to derive patient subgroups from real-world data (RWD), such that the patients within the same subgroup share similar clinical characteristics and safety outcomes. The effectiveness of our approach was validated on two existing clinical trials with the electronic health records (EHRs) from a large clinical research network. One is the donepezil trial for Alzheimer’s disease (AD), and the other is the Bevacizumab trial on colon cancer (CRC). The results show that our proposed algorithm can identify patient subgroups with coherent clinical manifestations and similar risk levels of encountering severe adverse events (SAEs). We further exemplify that potential rules for describing the patient subgroups with less SAEs can be derived to inform the design of clinical trial eligibility criteria.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The work from JX, HZ and FW was supported by NSF 1750326, ONR N00014-18-1-2585 and NIH RF1AG072449. The work from JB and HZ was supported by NIH R21AG068717 and NIH R21CA253394.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
This study has been reviewed by the University of Florida Institute Review Board under protocols IRB202003137 and IRB202000704.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The real data analyzed in this article were provided by OneFlorida Clinical Research Consortium and restrictions apply to the availability of these data. Requests for access to the data should be submitted to and approved by OneFlorida Clinical Research Consortium.