Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

The feasibility of targeted test-trace-isolate for the control of B.1.1.7

William J. Bradshaw, Jonathan H. Huggins, View ORCID ProfileAlun L. Lloyd, View ORCID ProfileKevin M. Esvelt
doi: https://doi.org/10.1101/2021.01.11.21249612
William J. Bradshaw
1Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 296, 50937 Cologne, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonathan H. Huggins
2Department of Mathematics & Statistics, Boston University, Boston, MA 02215, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alun L. Lloyd
3Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alun L. Lloyd
Kevin M. Esvelt
4Media Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kevin M. Esvelt
  • For correspondence: esvelt@mit.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Abstract

The SARS-CoV-2 variant B.1.1.7 reportedly exhibits substantially higher transmission than the ancestral strain and may generate a major surge of cases before vaccines become widely available. As B.1.1.7 can be sensitively detected using the Thermo Fisher TaqPath S-gene RT-PCR test, contact tracing and isolation programs appear well-suited to slowing the spread of the new variant, which is still rare in most of the dozens of countries in which it has been identified. However, key determinants of outcomes such as data-sharing, trace success, and isolation compliance vary widely between regions, which may discourage public health agencies from explicitly redirecting existing contact tracers to contain B.1.1.7. Here we apply a branching-process model to estimate the effectiveness of implementing a B.1.1.7-focused testing, contact tracing, and isolation strategy with realistic levels of performance. Our model indicates that bidirectional contact tracing can substantially slow the spread of B.1.1.7 even in regions where a large fraction of the population refuses to cooperate with contact tracers or to abide by quarantine and isolation requests.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was supported by gifts from the Reid Hoffman Foundation and the Open Philanthropy Project (to K.M.E.) and cluster time granted by the COVID-19 HPC consortium (MCB20071 to K.M.E.). A.L.L. is supported by the Drexel Endowment (NC State University) and by the award CDC U01CK000587-01M001 from the US Centers for Disease Control and Prevention. The funders had no role in the research, writing, or decision to publish.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

No experiments involving human subjects were performed.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

Code Availability: Code for configuring and running the model is publicly available at https://github.com/willbradshaw/covid-bidirectional-tracing

https://github.com/willbradshaw/covid-bidirectional-tracing

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted January 13, 2021.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
The feasibility of targeted test-trace-isolate for the control of B.1.1.7
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
The feasibility of targeted test-trace-isolate for the control of B.1.1.7
William J. Bradshaw, Jonathan H. Huggins, Alun L. Lloyd, Kevin M. Esvelt
medRxiv 2021.01.11.21249612; doi: https://doi.org/10.1101/2021.01.11.21249612
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
The feasibility of targeted test-trace-isolate for the control of B.1.1.7
William J. Bradshaw, Jonathan H. Huggins, Alun L. Lloyd, Kevin M. Esvelt
medRxiv 2021.01.11.21249612; doi: https://doi.org/10.1101/2021.01.11.21249612

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (62)
  • Allergy and Immunology (144)
  • Anesthesia (47)
  • Cardiovascular Medicine (419)
  • Dentistry and Oral Medicine (72)
  • Dermatology (49)
  • Emergency Medicine (147)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (174)
  • Epidemiology (4906)
  • Forensic Medicine (3)
  • Gastroenterology (185)
  • Genetic and Genomic Medicine (689)
  • Geriatric Medicine (72)
  • Health Economics (193)
  • Health Informatics (636)
  • Health Policy (322)
  • Health Systems and Quality Improvement (209)
  • Hematology (86)
  • HIV/AIDS (157)
  • Infectious Diseases (except HIV/AIDS) (5408)
  • Intensive Care and Critical Care Medicine (333)
  • Medical Education (96)
  • Medical Ethics (24)
  • Nephrology (77)
  • Neurology (692)
  • Nursing (42)
  • Nutrition (115)
  • Obstetrics and Gynecology (128)
  • Occupational and Environmental Health (211)
  • Oncology (447)
  • Ophthalmology (140)
  • Orthopedics (36)
  • Otolaryngology (91)
  • Pain Medicine (37)
  • Palliative Medicine (18)
  • Pathology (131)
  • Pediatrics (201)
  • Pharmacology and Therapeutics (131)
  • Primary Care Research (88)
  • Psychiatry and Clinical Psychology (787)
  • Public and Global Health (1832)
  • Radiology and Imaging (328)
  • Rehabilitation Medicine and Physical Therapy (142)
  • Respiratory Medicine (257)
  • Rheumatology (87)
  • Sexual and Reproductive Health (69)
  • Sports Medicine (63)
  • Surgery (102)
  • Toxicology (23)
  • Transplantation (29)
  • Urology (38)