Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

REAL-TIME MECHANISTIC BAYESIAN FORECASTS OF COVID-19 MORTALITY

View ORCID ProfileGraham C. Gibson, View ORCID ProfileNicholas G. Reich, View ORCID ProfileDaniel Sheldon
doi: https://doi.org/10.1101/2020.12.22.20248736
Graham C. Gibson
University of Massachusetts Amherst
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Graham C. Gibson
Nicholas G. Reich
University of Massachusetts Amherst
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nicholas G. Reich
Daniel Sheldon
University of Massachusetts Amherst
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Daniel Sheldon
  • For correspondence: sheldon@cs.umass.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

The COVID-19 pandemic emerged in late December 2019. In the first six months of the global outbreak, the US reported more cases and deaths than any other country in the world. Effective modeling of the course of the pandemic can help assist with public health resource planning, intervention efforts, and vaccine clinical trials. However, building applied forecasting models presents unique challenges during a pandemic. First, case data available to models in real-time represent a non-stationary fraction of the true case incidence due to changes in available diagnostic tests and test-seeking behavior. Second, interventions varied across time and geography leading to large changes in transmissibility over the course of the pandemic. We propose a mechanistic Bayesian model (MechBayes) that builds upon the classic compartmental susceptible-exposed-infected-recovered (SEIR) model to operationalize COVID-19 forecasting in real time. This framework includes non-parametric modeling of varying transmission rates, non-parametric modeling of case and death discrepancies due to testing and reporting issues, and a joint observation likelihood on new case counts and new deaths; it is implemented in a probabilistic programming language to automate the use of Bayesian reasoning for quantifying uncertainty in probabilistic forecasts. The model has been used to submit forecasts to the US Centers for Disease Control, through the COVID-19 Forecast Hub. We examine the performance relative to a baseline model as well as alternate models submitted to the Forecast Hub. Additionally, we include an ablation test of our extensions to the classic SEIR model. We demonstrate a significant gain in both point and probabilistic forecast scoring measures using MechBayes when compared to a baseline model and show that MechBayes ranks as one of the top 2 models out of 10 submitted to the COVID-19 Forecast Hub. Finally, we demonstrate that MechBayes performs significantly better than the classical SEIR model.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This material is based upon work supported by the National Science Foundation under Grant No. 1749854. This work has been supported by the National Institutes of General Medical Sciences (R35GM119582). The content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

N/A

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The manuscript uses the COVID-19 incident case and death data provided by JHU CSSE.

https://github.com/CSSEGISandData/COVID-19

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted December 24, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
REAL-TIME MECHANISTIC BAYESIAN FORECASTS OF COVID-19 MORTALITY
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
REAL-TIME MECHANISTIC BAYESIAN FORECASTS OF COVID-19 MORTALITY
Graham C. Gibson, Nicholas G. Reich, Daniel Sheldon
medRxiv 2020.12.22.20248736; doi: https://doi.org/10.1101/2020.12.22.20248736
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
REAL-TIME MECHANISTIC BAYESIAN FORECASTS OF COVID-19 MORTALITY
Graham C. Gibson, Nicholas G. Reich, Daniel Sheldon
medRxiv 2020.12.22.20248736; doi: https://doi.org/10.1101/2020.12.22.20248736

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (216)
  • Allergy and Immunology (495)
  • Anesthesia (106)
  • Cardiovascular Medicine (1096)
  • Dentistry and Oral Medicine (196)
  • Dermatology (141)
  • Emergency Medicine (274)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (502)
  • Epidemiology (9773)
  • Forensic Medicine (5)
  • Gastroenterology (481)
  • Genetic and Genomic Medicine (2313)
  • Geriatric Medicine (223)
  • Health Economics (462)
  • Health Informatics (1561)
  • Health Policy (736)
  • Health Systems and Quality Improvement (603)
  • Hematology (238)
  • HIV/AIDS (504)
  • Infectious Diseases (except HIV/AIDS) (11650)
  • Intensive Care and Critical Care Medicine (617)
  • Medical Education (238)
  • Medical Ethics (67)
  • Nephrology (257)
  • Neurology (2144)
  • Nursing (134)
  • Nutrition (337)
  • Obstetrics and Gynecology (427)
  • Occupational and Environmental Health (518)
  • Oncology (1180)
  • Ophthalmology (364)
  • Orthopedics (128)
  • Otolaryngology (220)
  • Pain Medicine (146)
  • Palliative Medicine (50)
  • Pathology (311)
  • Pediatrics (695)
  • Pharmacology and Therapeutics (300)
  • Primary Care Research (267)
  • Psychiatry and Clinical Psychology (2182)
  • Public and Global Health (4661)
  • Radiology and Imaging (778)
  • Rehabilitation Medicine and Physical Therapy (457)
  • Respiratory Medicine (624)
  • Rheumatology (274)
  • Sexual and Reproductive Health (226)
  • Sports Medicine (210)
  • Surgery (252)
  • Toxicology (43)
  • Transplantation (120)
  • Urology (94)