Abstract
Objectives To assess 1) differences in the hemodynamic response to the active stand test in older adults with a clinical diagnosis of vasovagal syncope compared to age-matched controls 2) if the active stand test combined with machine learning approaches can be used to identify the presence of vasovagal syncope in older adults.
Approach Adults aged 50 and over (Vasovagal Syncope N=46 Age=66.9±10.3; Control N=86 Age=65.3±9.5) completed an active stand test. Multiple features were extracted to characterize the hemodynamic responses to the active stand test and were compared between groups. Classification was performed using machine learning algorithms including linear discriminant analysis, quadratic discriminant analysis, support vector machine and an ensemble majority vote classifier.
Main Results Subjects with vasovagal syncope demonstrated a higher resting (supine) heart rate (69.8±13.1 bpm vs 63.3±12.1 bpm; P=0.007), a smaller initial systolic blood pressure drop (−20.2±20.1% vs −27.3±17.5%; P=0.005), larger drops in stroke volume (−14.7±24.0% vs −2.7±23.3%; P=0.010) and cardiac output (−6.4±18.5% vs 5.8±22.3%;P<0.001) and a larger increase in total peripheral resistance (8.1±30.4% vs −6.03±22.8%; P=0.002) compared to controls. A majority vote classifier identified the presence of vasovagal syncope with 82.6% sensitivity, 76.8% specificity, and average accuracy of 78.9%.
Significance Older adults with vasovagal syncope display a unique hemodynamic and autonomic response to active standing characterized by relative autonomic hypersensitivity and larger drops in cardiac output compared to age-matched controls. With suitable machine learning algorithms, the active stand test holds the potential to be used to screen older adults for reflex syncopes and hypotensive susceptibility potentially reducing test time, cost, and patient discomfort. More broadly this paper presents a machine learning framework to support use of the active stand test for classification of clinical outcomes of interest.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The funding for The Irish Longitudinal Study on Ageing from which control data was obtained was provided by the Irish government, The Atlantic Philanthropies, and Irish Life plc. All other aspects of the study were unfunded.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
Informed consent was obtained from all participants in the current study in accordance with the Declaration of Helsinki [18]. Ethical approval for the current study was obtained from the Tallaght University Hospital (TUH)/St James ′s Hospital (SJH) Joint Research Ethics Committee.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Footnotes
E-mail: cfinucane{at}stjames.ie
Data Availability
The control subject data was obtained from The Irish Longitudinal Study on Ageing. This data set is lodged in the Irish Social Science Data Archive (www.ucd.ie/issda/data/tilda) and is accessible for bona fide research purposes. The subject data was obtained from St. James's Hospital, Dublin, Ireland and is unavailable.