ABSTRACT
Objectives SARS-CoV-2 pandemic is a health emergency for occupational healthcare workers at COVID19 hospital wards in Italy. The objective of the study was to investigate if U-Earth AIRcel bioreactors were effective in monitoring and improving air quality via detection, capture, and destruction of the SARS-CoV-2 virus, reducing the risk of transmission among healthcare workers.
Methods U-Earth AIRcel bioreactors are a demonstrated effective biomonitoring system. We implemented a methodological approach wherein they were placed at various hospitals treating COVID-19 patients in Italy. The detection of the SARS-CoV-2 virus was achieved through rapid biomonitoring testing of the solutes from the AIRcel bioreactors via SARS-CoV-2 rapid test antigen and consecutive reverse transcription-polymerase chain reaction (RT-PCR) analysis with the multiplex platform (XABT) and the Real-Time PCR Rotor-Gene.
Results The marked presence of the SARS-CoV-2 virus was found in multiple water samples via the detection of ORF1ab + N and/or E gene involved in gene expression and cellular signaling of the SARS-CoV virus. The AIRcel bioreactors were able to neutralize the virus effectively as traces of the viruses were no longer found in multiple solute samples after an overnight period.
Conclusions Transmission of COVID-19 via bio-aerosols, transmitted by infected patients, remains a viable threat for health workers. AIRcel bioreactors allow for rapid biomonitoring testing for early virus detection within the environment, reducing the risk of exponential contagion exposure and maintaining good air quality without endangering health workers. This same protocol can also be extended to public spaces as a bio-monitoring tool for hotpots early detection.
What is already known about this subject?
Transmission of SARS-CoV-2 virus via bio-aerosols is a threat to health care workers. Only few studies have conducted investigations on how to limit the spread of the virus via air purifiers.
Existing studies show a higher risk to health care workers serving at COVID-19 wards with a higher risk of viral transmission.
What are the new findings?
In this study, SARS-CoV-2 virus traces were captured by U-Earth air purifier bioreactor units placed at several hospitals in Italy.
AIRcel bioreactors achieved early detection of the SARS-CoV-2 virus within the environment via rapid biomonitoring testing.
AIRcel bioreactors have proved effective in biomonitoring via the detection, capture, and destruction of SARS-CoV-2 virus through reverse transcription-polymerase chain reaction (RT-PCR) analysis with the multiplex platform (XABT) Multiple Real-Time PCR Rotor-Gene.
How might this impact on policy or clinical practice in the foreseeable future?
This study shows the need for effective surveillance and biomonitoring to contain the spread of the SARS-CoV-2 virus. AIRcel bioreactors, an effective occupational surveillance system, can reduce the transmission of the virus to health care workers serving COVID-19 infected patients at hospital wards.
AIRcel bioreactors can also be used in public spaces and other settings, such as schools, to increase the speed of detection of the SARS-CoV-2 virus and improve control of the environment, thereby decreasing the exponential growth of the pandemic.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No financial assistance was received in support of the study.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
In this work we used water extracted samples from air purifiers placed in multiple hospitals. Informed consent was not needed from the patients since no human subjects were involved in the study.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The authors confirm that the data supporting the findings of this study are available within the article.