Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Causal effects of circulating cytokine concentrations on risk of Alzheimer’s disease: A bidirectional two-sample Mendelian randomization study

View ORCID ProfilePanagiota Pagoni, Laura D Howe, George Davey Smith, Yoav Ben-Shlomo, Evie Stergiakouli, Emma L Anderson
doi: https://doi.org/10.1101/2020.11.18.20232629
Panagiota Pagoni
1MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
2Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Panagiota Pagoni
  • For correspondence: panagiota.pagoni@bristol.ac.uk
Laura D Howe
1MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
2Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
George Davey Smith
1MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
2Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yoav Ben-Shlomo
2Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Evie Stergiakouli
1MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
2Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Emma L Anderson
1MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
2Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

Background There is considerable interest in the role of neuroinflammation in the pathogenesis of Alzheimer’s disease. Evidence from observational studies suggests an association between cytokine concentrations and Alzheimer’s disease. However, establishing a causal role of cytokine concentrations on risk of Alzheimer’s disease is challenging due to bias from reverse causation and residual confounding.

Methods We used two-sample MR to explore causal effects of circulating cytokine concentrations on Alzheimer’s disease and vice versa, employing genetic variants associated with cytokine concentrations (N=8,293) and Alzheimer’s disease (71,880 cases / 383,378 controls) from the largest non-overlapping genome-wide association studies (GWAS) of European ancestry.

Results There was weak evidence to suggest that 1 standard deviation (SD) increase in levels of CTACK (CCL27) (OR= 1.09 95%CI: 1.01 to 1.19, p=0.03) increased risk of Alzheimer’s disease. There was also weak evidence of a causal effect of 1 SD increase in levels of MIP-1b (CCL4) (OR=1.04 95%CI: 0.99 to 1.09, p=0.08), Eotaxin (OR=1.08 95%CI: 0.99 to 1.17, p =0.10), GROa (CXCL1) (OR=1.04 95%CI: 0.99 to 1.10, p=0.15), MIG (CXCL9) (OR=1.17 95%CI: 0.97 to 1.41, p=0.10), IL-8 (Wald Ratio: OR=1.21 95%CI: 0.97 to 1.51, p=0.09) and IL-2 (Wald Ratio: OR=1.21 95%CI: 0.94 to 1.56, p=0.14) on greater risk of Alzheimer’s disease. There was little evidence of a causal effect of genetic liability to Alzheimer’s disease on circulating cytokine concentrations.

Conclusions Our study provides some evidence supporting a causal role of cytokines in the pathogenesis of Alzheimer’s disease. However, more studies are needed to elucidate the specific mechanistic pathways via which cytokines alter the risk of Alzheimer’s disease.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This work was supported by a grant from the BRACE Alzheimers Disease charity (BR16/028). PP, ELA, and ES work in a unit that receives funding from the University of Bristol and the UK Medical Research Council (MC_UU_00011/1, MC_UU_00011/3). ELA is funded by an MRC Skills Development Award from the UK Medical Research Council (MR/P014437/1). LDH is funded by a Career Development Award from the UK Medical Research Council (MR/M020894/1). This publication is the work of the authors, and ELA, will serve as a guarantor for the contents of this paper.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

N/A

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Footnotes

  • ↵* joint last authors

  • Funding:This work was supported by a grant from the BRACE Alzheimer’s Disease charity (BR16/028). PP, ELA, and ES work in a unit that receives funding from the University of Bristol and the UK Medical Research Council (MC_UU_00011/1, MC_UU_00011/3). ELA is funded by an MRC Skills Development Award from the UK Medical Research Council (MR/P014437/1). LDH is funded by a Career Development Award from the UK Medical Research Council (MR/M020894/1). This publication is the work of the authors, and ELA, will serve as a guarantor for the contents of this paper.

  • Competing interests: None declared

Data Availability

N/A

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted November 20, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Causal effects of circulating cytokine concentrations on risk of Alzheimer’s disease: A bidirectional two-sample Mendelian randomization study
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Causal effects of circulating cytokine concentrations on risk of Alzheimer’s disease: A bidirectional two-sample Mendelian randomization study
Panagiota Pagoni, Laura D Howe, George Davey Smith, Yoav Ben-Shlomo, Evie Stergiakouli, Emma L Anderson
medRxiv 2020.11.18.20232629; doi: https://doi.org/10.1101/2020.11.18.20232629
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Causal effects of circulating cytokine concentrations on risk of Alzheimer’s disease: A bidirectional two-sample Mendelian randomization study
Panagiota Pagoni, Laura D Howe, George Davey Smith, Yoav Ben-Shlomo, Evie Stergiakouli, Emma L Anderson
medRxiv 2020.11.18.20232629; doi: https://doi.org/10.1101/2020.11.18.20232629

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Genetic and Genomic Medicine
Subject Areas
All Articles
  • Addiction Medicine (230)
  • Allergy and Immunology (507)
  • Anesthesia (111)
  • Cardiovascular Medicine (1264)
  • Dentistry and Oral Medicine (207)
  • Dermatology (148)
  • Emergency Medicine (283)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (538)
  • Epidemiology (10056)
  • Forensic Medicine (5)
  • Gastroenterology (502)
  • Genetic and Genomic Medicine (2486)
  • Geriatric Medicine (240)
  • Health Economics (482)
  • Health Informatics (1653)
  • Health Policy (757)
  • Health Systems and Quality Improvement (638)
  • Hematology (250)
  • HIV/AIDS (538)
  • Infectious Diseases (except HIV/AIDS) (11896)
  • Intensive Care and Critical Care Medicine (627)
  • Medical Education (255)
  • Medical Ethics (75)
  • Nephrology (269)
  • Neurology (2304)
  • Nursing (140)
  • Nutrition (354)
  • Obstetrics and Gynecology (458)
  • Occupational and Environmental Health (537)
  • Oncology (1259)
  • Ophthalmology (377)
  • Orthopedics (134)
  • Otolaryngology (226)
  • Pain Medicine (158)
  • Palliative Medicine (50)
  • Pathology (326)
  • Pediatrics (737)
  • Pharmacology and Therapeutics (315)
  • Primary Care Research (282)
  • Psychiatry and Clinical Psychology (2295)
  • Public and Global Health (4850)
  • Radiology and Imaging (846)
  • Rehabilitation Medicine and Physical Therapy (493)
  • Respiratory Medicine (657)
  • Rheumatology (289)
  • Sexual and Reproductive Health (241)
  • Sports Medicine (228)
  • Surgery (273)
  • Toxicology (44)
  • Transplantation (131)
  • Urology (100)