ABSTRACT
Background Calls are increasing for widespread SARS-CoV-2 infection testing of people from populations with a very low prevalence of infection. We quantified the impact of less than perfect diagnostic test accuracy on populations, and on individuals, in low prevalence settings, focusing on false positives and the role of confirmatory testing.
Methods We developed a simple, interactive tool to assess the impact of different combinations of test sensitivity, specificity and infection prevalence in a notional population of 100,000. We derived numbers of true positives, true negatives, false positives and false negatives, positive predictive value (PPV – the percentage of test positives that are true positives) and overall test accuracy for three testing strategies: (1) single test for all; (2) add repeat testing in test positives; (3) add further repeat testing in those with discrepant results. We also assessed the impact on test results for individuals having one, two or three tests under these three strategies.
Results With sensitivity of 80%, infection prevalence of 1 in 2,000, and specificity 99.9% on all tests, PPV in the tested population of 100,000 will be only 29% with one test, increasing to > 99.5% (100% when rounded to the nearest %) with repeat testing in strategies 2 or 3. More realistically, if specificity is 95% for the first and 99.9% for subsequent tests, single test PPV will be only 1%, increasing to 86% with repeat testing in strategy 2, or 79% with strategy 3 (albeit with 6 fewer false negatives than strategy 2). In the whole population, or in particular individuals, PPV increases as infection becomes more common in the population but falls to unacceptably low levels with lower test specificity.
Conclusion To avoid multiple unnecessary restrictions on whole populations, and in particular individuals, from widespread population testing for SARS-CoV-2, the crucial roles of extremely high test specificity and of confirmatory testing must be fully appreciated and incorporated into policy decisions.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
This work has been funded by Health Data Research UK and the British Heart Foundation (BHF), via the BHF Data Science Centre
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
N/A - this is a modelling study so no ethical approval required
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All relevant data pertinent to the manuscript is available within the manuscript or at the links provided.