Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Computer-aided covid-19 patient screening using chest images (X-Ray and CT scans)

View ORCID ProfileXavier P. Burgos-Artizzu
doi: https://doi.org/10.1101/2020.07.16.20155093
Xavier P. Burgos-Artizzu
Transmural Biotech S. L. Barcelona, Spain, e-mail:
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Xavier P. Burgos-Artizzu
  • For correspondence: xpburgos@transmuralbiotech.com xpburgos@transmuralbiotech.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

ABSTRACT

Objectives to evaluate the performance of Artificial Intelligence (AI) methods to detect covid-19 from chest images (X-Ray and CT scans).

Methods Chest CT scans and X-Ray images collected from different centers and institutions were downloaded and combined together. Images were separated by patient and 66% of the patients were used to develop and train AI image-based classifiers. Then, the AI automated classifiers were evaluated on a separate set of patients (the remaining 33% patients).

Results (Chest X-Ray) Five different data sources were combined for a total of N=9,841 patients (1,733 with covid-19, 810 with bacterial tuberculosis and 7,298 healthy patients). The test sample size was N=3,528 patients. The best AI method reached an Area Under the Curve (AUC) for covid-19 detection of 99%, with a detection rate of 96.4% at 1.0% false positive rate.

Results (Chest CT scans) Two different data sources were combined for a total of N=363 patients (191 having covid-19 and 172 healthy patients). The test sample size was N=121 patients. The best AI method reached an AUC for covid-19 detection of 90.9%, with a detection rate of 90.6% at 24.6% false positive rate.

Conclusions Computer aided automatic covid-19 detection from chest X-ray images showed promising results to be used as screening tool during the covid-19 outbreak. The developed method may help to manage patients better in case access to PCR testing is not possible or to detect patients with symptoms missed in a first round of PCR testing. The method will be made available online (www.quantuscovid19.org). These results merit further evaluation collecting more images. We hope this study will allow us to start such collaborations.

Competing Interest Statement

All authors are Transmural Biotech employees

Funding Statement

This work in its entirety was supported by Transmural Biotech SL.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

External open research datasets were used, we were not responsible for data acquisition in any way (patient consent, ethical board approval, etc.)

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data used comes from external open research sources available online. The rest of data is available in the main text. The final X-Ray model will be provided online at https://www.quantuscovid19.org

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted July 17, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Computer-aided covid-19 patient screening using chest images (X-Ray and CT scans)
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Computer-aided covid-19 patient screening using chest images (X-Ray and CT scans)
Xavier P. Burgos-Artizzu
medRxiv 2020.07.16.20155093; doi: https://doi.org/10.1101/2020.07.16.20155093
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Computer-aided covid-19 patient screening using chest images (X-Ray and CT scans)
Xavier P. Burgos-Artizzu
medRxiv 2020.07.16.20155093; doi: https://doi.org/10.1101/2020.07.16.20155093

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Radiology and Imaging
Subject Areas
All Articles
  • Addiction Medicine (216)
  • Allergy and Immunology (495)
  • Anesthesia (106)
  • Cardiovascular Medicine (1096)
  • Dentistry and Oral Medicine (196)
  • Dermatology (141)
  • Emergency Medicine (274)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (502)
  • Epidemiology (9772)
  • Forensic Medicine (5)
  • Gastroenterology (481)
  • Genetic and Genomic Medicine (2313)
  • Geriatric Medicine (223)
  • Health Economics (462)
  • Health Informatics (1561)
  • Health Policy (736)
  • Health Systems and Quality Improvement (603)
  • Hematology (238)
  • HIV/AIDS (504)
  • Infectious Diseases (except HIV/AIDS) (11649)
  • Intensive Care and Critical Care Medicine (617)
  • Medical Education (238)
  • Medical Ethics (67)
  • Nephrology (257)
  • Neurology (2144)
  • Nursing (134)
  • Nutrition (337)
  • Obstetrics and Gynecology (427)
  • Occupational and Environmental Health (518)
  • Oncology (1180)
  • Ophthalmology (364)
  • Orthopedics (128)
  • Otolaryngology (220)
  • Pain Medicine (146)
  • Palliative Medicine (50)
  • Pathology (311)
  • Pediatrics (695)
  • Pharmacology and Therapeutics (300)
  • Primary Care Research (267)
  • Psychiatry and Clinical Psychology (2182)
  • Public and Global Health (4661)
  • Radiology and Imaging (778)
  • Rehabilitation Medicine and Physical Therapy (457)
  • Respiratory Medicine (624)
  • Rheumatology (274)
  • Sexual and Reproductive Health (226)
  • Sports Medicine (210)
  • Surgery (252)
  • Toxicology (43)
  • Transplantation (120)
  • Urology (94)