Abstract
Early diagnosis of the coronavirus disease in 2019 (COVID-19) is essential for controlling this pandemic. COVID-19 has been spreading rapidly all over the world. There is no vaccine available for this virus yet. Fast and accurate COVID-19 screening is possible using computed tomography (CT) scan images. The deep learning techniques used in the proposed method was based on a convolutional neural network (CNN). Our manuscript focuses on differentiating the CT scan images of COVID-19 and non-COVID 19 CT using different deep learning techniques. A self developed model named CTnet-10 was designed for the COVID-19 diagnosis, having an accuracy of 82.1 %. Also, other models that we tested are DenseNet-169, VGG-16, ResNet-50, InceptionV3, and VGG-19. The VGG-19 proved to be superior with an accuracy of 94.52 % as compared to all other deep learning models. Automated diagnosis of COVID-19 from the CT scan pictures can be used by the doctors as a quick and efficient method for COVID-19 screening.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No funding received
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The ethics committee of KJSCE
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
Data can be made available