ABSTRACT
Gut microbiome sequencing has shown promise as a predictive biomarker for a wide range of diseases, including classification of liver disease and severity grading. However, the potential of gut microbiota for prospective risk prediction of liver disease has not been assessed. Here, we utilise shallow gut metagenomic sequencing data of a large population-based cohort (N=>7,115) and ∼15 years of electronic health register follow-up together with machine-learning to investigate the predictive capacity of gut microbial predictors, individually and in conjunction with conventional risk factors, for incident liver disease and alcoholic liver disease. Separately, conventional and microbiome risk factors showed comparable predictive capacity for incident liver disease. However, microbiome augmentation of conventional risk factor models using gradient boosted classifiers significantly improved performance, with average AUROCs of 0.834 for incident liver disease and 0.956 for alcoholic liver disease (AUPRCs of 0.185 and 0.304, respectively). Disease-free survival analysis showed significantly improved stratification using microbiome-augmented risk models as compared to conventional risk factors alone. Investigation of predictive microbial signatures revealed a wide range of bacterial taxa, including those previously associated with hepatic function and disease. This study supports the potential clinical validity of gut metagenomic sequencing to complement conventional risk factors for risk prediction of liver diseases.
Competing Interest Statement
VS has received honoraria for consulting from Novo Nordisk and Sanofi and travel support from Novo Nordisk. He also has ongoing research collaboration with Bayer Ltd (All unrelated to the present study). RL serves as a consultant or advisory board member for Anylam/Regeneron, Arrowhead Pharmaceuticals, AstraZeneca, Bird Rock Bio, Boehringer Ingelheim, Bristol-Myer Squibb, Celgene, Cirius, CohBar, Conatus, Eli Lilly, Galmed, Gemphire, Gilead, Glympse bio, GNI, GRI Bio, Inipharm, Intercept, Ionis, Janssen Inc., Merck, Metacrine, Inc., NGM Biopharmaceuticals, Novartis, Novo Nordisk, Pfizer, Prometheus, Promethera, Sanofi, Siemens, and Viking Therapeutics. In addition, his institution has received grant support from Allergan, Boehringer-Ingelheim, Bristol-Myers Squibb, Cirius, Eli Lilly and Company, Galectin Therapeutics, Galmed Pharmaceuticals, GE, Genfit, Gilead, Intercept, Grail, Janssen, Madrigal Pharmaceuticals, Merck, NGM Biopharmaceuticals, NuSirt, Pfizer, pH Pharma, Prometheus, and Siemens. He is also co-founder of Liponexus, Inc.
Funding Statement
VS was supported by the Finnish Foundation for Cardiovascular Research. MI was supported by the Munz Chair of Cardiovascular Prediction and Prevention. ASH was supported by the Academy of Finland, grant no. 321356. LL was supported by Academy of Finland (295741, 307127). TN was supported by the Emil Aaltonen Foundation, the Paavo Nurmi Foundation, the Finnish Medical Foundation, and the Academy of Finland (grant no. 321351). RL receives funding support from NIEHS (5P42ES010337), NCATS (5UL1TR001442), NIDDK (U01DK061734, R01DK106419, P30DK120515, R01DK121378, R01DK124318), and DOD PRCRP (W81XWH-18-2-0026). This study was supported by the Victorian Government Operational Infrastructure Support (OIS) program, and by core funding from: the UK Medical Research Council (MR/L003120/1), the British Heart Foundation (RG/13/13/30194; RG/18/13/33946) and the National Institute for Health Research [Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust] [*]. This work was supported by Health Data Research UK, which is funded by the UK Medical Research Council, Engineering and Physical Sciences Research Council, Economic and Social Research Council, Department of Health and Social Care (England), Chief Scientist Office of the Scottish Government Health and Social Care Directorates, Health and Social Care Research and Development Division (Welsh Government), Public Health Agency (Northern Ireland), British Heart Foundation and Wellcome. *The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The study protocol of FINRISK 2002 was approved by the Coordinating Ethical Committee of the Helsinki and Uusimaa Hospital District (Ref. 558/E3/2001). All participants signed an informed consent. The study was conducted according to the World Medical Association Declaration of Helsinki on ethical principles.
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
The data for the present study are available with a written application to the THL Biobank as instructed in the website of the Biobank: https://thl.fi/en/web/thl-biobank/for-researchers. Predictive models are available at https://doi.org/10.26188/12554573.v1