Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Is there an airborne component to the transmission of COVID-19? : a quantitative analysis study

View ORCID ProfileClive B. Beggs
doi: https://doi.org/10.1101/2020.05.22.20109991
Clive B. Beggs
1Carnegie School of Sport, Leeds Beckett University, Leeds, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Clive B. Beggs
  • For correspondence: c.beggs@leedsbeckett.ac.uk
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Objectives While COVID-19 is known to be spread by respiratory droplets (which travel <2m horizontally), much less is known about its transmission via aerosols, which can become airborne and widely distributed throughout room spaces. In order to quantify the risk posed by COVID-19 infectors exhaling respiratory aerosols in enclosed spaces, we undertook a computer modelling study to simulate transmission in an office building.

Methods Respiratory droplet data from four published datasets were analysed to quantify the number and volume of droplets <100μm diameter produced by a typical cough and speaking event (i.e. counting from 1 to 100). This was used in a stochastic model to simulate (10000 simulations) the number of respiratory particles, originating from a COVID-19 infector, that would be inhaled in one hour by a susceptible individual practicing socially distancing in a 4 × 4 × 2.5m office space. Several scenarios were simulated that mimicked the presence of both symptomatic and asymptomatic COVID-19 infectors.

Results On average, each cough and speaking event produced similar numbers of droplets <100μm diameter (median range = 971.9 – 1013.4). Computer simulations (ventilation rate=2AC/h) revealed that sharing the office space with a symptomatic COVID-19 infector (4 coughs and 10 speaking events per hour) for one hour resulted in the inhalation of 16.9 (25-75th range = 8.1-33.9) aerosolised respiratory droplets, equating to about 280-1190 particles inhaled over a 35-hour working week. Sharing with an asymptomatic infector (10 speaking events per hour) resulted in the about 196–875 particles inhaled over 35 hours.

Conclusions Given that live SARS-CoV-2 virions are known to be shed in high concentrations from the nasal cavity of both symptomatic and asymptomatic COVID-19 patients, the results suggest that those sharing enclosed spaces with infectors for long periods may be at risk of contracting COVID-19 by the aerosol route, even when practicing social distancing.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

The study was self funded.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Ethics approval granted by the IRB of Leeds Beckett University.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The study is a computer simulation assessing the risk of COVID-19 transmission in an office space. As such, it utilizes data already published elsewhere. The sources of these data are clearly indicated and cited in the manuscript.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted May 26, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Is there an airborne component to the transmission of COVID-19? : a quantitative analysis study
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Is there an airborne component to the transmission of COVID-19? : a quantitative analysis study
Clive B. Beggs
medRxiv 2020.05.22.20109991; doi: https://doi.org/10.1101/2020.05.22.20109991
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Is there an airborne component to the transmission of COVID-19? : a quantitative analysis study
Clive B. Beggs
medRxiv 2020.05.22.20109991; doi: https://doi.org/10.1101/2020.05.22.20109991

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (240)
  • Allergy and Immunology (521)
  • Anesthesia (125)
  • Cardiovascular Medicine (1420)
  • Dentistry and Oral Medicine (217)
  • Dermatology (158)
  • Emergency Medicine (291)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (584)
  • Epidemiology (10297)
  • Forensic Medicine (6)
  • Gastroenterology (527)
  • Genetic and Genomic Medicine (2629)
  • Geriatric Medicine (254)
  • Health Economics (497)
  • Health Informatics (1733)
  • Health Policy (789)
  • Health Systems and Quality Improvement (673)
  • Hematology (266)
  • HIV/AIDS (565)
  • Infectious Diseases (except HIV/AIDS) (12093)
  • Intensive Care and Critical Care Medicine (649)
  • Medical Education (273)
  • Medical Ethics (83)
  • Nephrology (289)
  • Neurology (2461)
  • Nursing (145)
  • Nutrition (377)
  • Obstetrics and Gynecology (493)
  • Occupational and Environmental Health (568)
  • Oncology (1324)
  • Ophthalmology (401)
  • Orthopedics (146)
  • Otolaryngology (237)
  • Pain Medicine (168)
  • Palliative Medicine (51)
  • Pathology (343)
  • Pediatrics (780)
  • Pharmacology and Therapeutics (330)
  • Primary Care Research (296)
  • Psychiatry and Clinical Psychology (2397)
  • Public and Global Health (5007)
  • Radiology and Imaging (893)
  • Rehabilitation Medicine and Physical Therapy (528)
  • Respiratory Medicine (681)
  • Rheumatology (309)
  • Sexual and Reproductive Health (256)
  • Sports Medicine (245)
  • Surgery (298)
  • Toxicology (45)
  • Transplantation (140)
  • Urology (108)