Abstract
Recent studies indicated that detecting radiographic patterns on CT chest scans can yield high sensitivity and specificity for COVID-19 detection. In this work, we scrutinize the effectiveness of deep learning models for semantic segmentation of pneumonia infected area segmentation in CT images for the detection of COVID-19. We explore the efficacy of U-Nets and Fully Convolutional Neural Networks in this task using real-world CT data from COVID-19 patients. The results indicate that Fully Convolutional Neural Networks are capable of accurate segmentation despite the class imbalance on the dataset and the man-made annotation errors on the boundaries of symptom manifestation areas, and can be a promising method for further analysis of COVID-19 induced pneumonia symptoms in CT images.
Impact Statement Fully Convolutional Neural Networks appear to be an accurate segmentation method in CT scans for COVID-19 pneumonia and could assist in the detection as a fast and cost-effective option.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No funding has been received.
Author Declarations
All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.
Yes
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Paper in collection COVID-19 SARS-CoV-2 preprints from medRxiv and bioRxiv
The Chan Zuckerberg Initiative, Cold Spring Harbor Laboratory, the Sergey Brin Family Foundation, California Institute of Technology, Centre National de la Recherche Scientifique, Fred Hutchinson Cancer Center, Imperial College London, Massachusetts Institute of Technology, Stanford University, University of Washington, and Vrije Universiteit Amsterdam.