Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Distinguishing L and H phenotypes of COVID-19 using a single x-ray image

Mohammad Tariqul Islam, Jason W. Fleischer
doi: https://doi.org/10.1101/2020.04.27.20081984
Mohammad Tariqul Islam
Princeton University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jason W. Fleischer
Princeton University
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: jasonf@princeton.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Recent observations have shown that there are two types of COVID-19 response: an H phenotype with high lung elastance and weight, and an L phenotype with low measures1. H-type patients have pneumonia-like thickening of the lungs and require ventilation to survive; L-type patients have clearer lungs that may be injured by mechanical assistance2,3. As treatment protocols differ between the two types, and the number of ventilators is limited, it is vital to classify patients appropriately. To date, the only way to confirm phenotypes is through high-resolution computed tomography2. Here, we identify L- and H-type patients from their frontal chest x-rays using feature-embedded machine learning. We then apply the categorization to multiple images from the same patient, extending it to detect and monitor disease progression and recovery. The results give an immediate criterion for coronavirus triage and provide a methodology for respiratory diseases beyond COVID-19.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

The authors thank DARPA and the AFOSR for general support.

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The data employed in the study are publicly available in the links: 1. COVID-19 Image Data Collection, https://github.com/ieee8023/covid-chestxray-dataset 2. RSNA Pneumonia Detection Challange, https://www.kaggle.com/c/rsna-pneumonia-detection-challenge

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC 4.0 International license.
Back to top
PreviousNext
Posted May 03, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Distinguishing L and H phenotypes of COVID-19 using a single x-ray image
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Distinguishing L and H phenotypes of COVID-19 using a single x-ray image
Mohammad Tariqul Islam, Jason W. Fleischer
medRxiv 2020.04.27.20081984; doi: https://doi.org/10.1101/2020.04.27.20081984
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Distinguishing L and H phenotypes of COVID-19 using a single x-ray image
Mohammad Tariqul Islam, Jason W. Fleischer
medRxiv 2020.04.27.20081984; doi: https://doi.org/10.1101/2020.04.27.20081984

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Radiology and Imaging
Subject Areas
All Articles
  • Addiction Medicine (227)
  • Allergy and Immunology (500)
  • Anesthesia (110)
  • Cardiovascular Medicine (1230)
  • Dentistry and Oral Medicine (206)
  • Dermatology (147)
  • Emergency Medicine (282)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (529)
  • Epidemiology (10011)
  • Forensic Medicine (5)
  • Gastroenterology (497)
  • Genetic and Genomic Medicine (2445)
  • Geriatric Medicine (236)
  • Health Economics (479)
  • Health Informatics (1635)
  • Health Policy (751)
  • Health Systems and Quality Improvement (633)
  • Hematology (248)
  • HIV/AIDS (531)
  • Infectious Diseases (except HIV/AIDS) (11857)
  • Intensive Care and Critical Care Medicine (625)
  • Medical Education (251)
  • Medical Ethics (74)
  • Nephrology (268)
  • Neurology (2275)
  • Nursing (139)
  • Nutrition (350)
  • Obstetrics and Gynecology (452)
  • Occupational and Environmental Health (532)
  • Oncology (1244)
  • Ophthalmology (375)
  • Orthopedics (133)
  • Otolaryngology (226)
  • Pain Medicine (155)
  • Palliative Medicine (50)
  • Pathology (324)
  • Pediatrics (729)
  • Pharmacology and Therapeutics (311)
  • Primary Care Research (282)
  • Psychiatry and Clinical Psychology (2280)
  • Public and Global Health (4826)
  • Radiology and Imaging (834)
  • Rehabilitation Medicine and Physical Therapy (488)
  • Respiratory Medicine (650)
  • Rheumatology (283)
  • Sexual and Reproductive Health (237)
  • Sports Medicine (225)
  • Surgery (266)
  • Toxicology (44)
  • Transplantation (124)
  • Urology (99)