Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Quantifying the effect of quarantine control in Covid-19 infectious spread using machine learning

Raj Dandekar, George Barbastathis
doi: https://doi.org/10.1101/2020.04.03.20052084
Raj Dandekar
1Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
George Barbastathis
2Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
3Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: gbarb@mit.edu
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Since the first recording of what we now call Covid-19 infection in Wuhan, Hubei province, China on Dec 31, 2019 (CHP 2020), the disease has spread worldwide and met with a wide variety of social distancing and quarantine policies. The effectiveness of these responses is notoriously difficult to quantify as individuals travel, violate policies deliberately or inadvertently, and infect others without themselves being detected (Li et al. 2020a; Wu & Leung 2020; Wang et al. 2020; Chinazzi et al. 2020; Ferguson et al. 2020; Kraemer et al. 2020). Moreover, the publicly available data on infection rates are themselves unreliable due to limited testing and even possibly under-reporting (Li et al. 2020b). In this paper, we attempt to interpret and extrapolate from publicly available data using a mixed first-principles epidemiological equations and data-driven neural network model. Leveraging our neural network augmented model, we focus our analysis on four locales: Wuhan, Italy, South Korea and the United States of America, and compare the role played by the quarantine and isolation measures in each of these countries in controlling the effective reproduction number Rt of the virus. Our results unequivocally indicate that the countries in which rapid government interventions and strict public health measures for quarantine and isolation were implemented were successful in halting the spread of infection and prevent it from exploding exponentially. In the case of Wuhan especially, where the available data were earliest available, we have been able to test the predicting ability of our model by training it from data in the January 24th till March 3rd window, and then matching the predictions up to April 1st. Even for Italy and South Korea, we have a buffer window of one week (25 March - 1 April) to validate the predictions of our model. In the case of the US, our model captures well the current infected curve growth and predicts a halting of infection spread by 20 April 2020. We further demonstrate that relaxing or reversing quarantine measures right now will lead to an exponential explosion in the infected case count, thus nullifying the role played by all measures implemented in the US since mid March 2020.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This effort was partially funded by the Intelligence Advanced Reseach Projects Activity (IARPA.)

Author Declarations

All relevant ethical guidelines have been followed; any necessary IRB and/or ethics committee approvals have been obtained and details of the IRB/oversight body are included in the manuscript.

Yes

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

Data for the infected and recovered case count in Wuhan is obtained from the data released by the Chinese National Health Commission. Infected and recovered count data for Italy, South Korea and USA is obtained from the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted April 06, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Quantifying the effect of quarantine control in Covid-19 infectious spread using machine learning
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Quantifying the effect of quarantine control in Covid-19 infectious spread using machine learning
Raj Dandekar, George Barbastathis
medRxiv 2020.04.03.20052084; doi: https://doi.org/10.1101/2020.04.03.20052084
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Quantifying the effect of quarantine control in Covid-19 infectious spread using machine learning
Raj Dandekar, George Barbastathis
medRxiv 2020.04.03.20052084; doi: https://doi.org/10.1101/2020.04.03.20052084

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (62)
  • Allergy and Immunology (142)
  • Anesthesia (47)
  • Cardiovascular Medicine (416)
  • Dentistry and Oral Medicine (70)
  • Dermatology (49)
  • Emergency Medicine (146)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (171)
  • Epidemiology (4875)
  • Forensic Medicine (3)
  • Gastroenterology (183)
  • Genetic and Genomic Medicine (678)
  • Geriatric Medicine (70)
  • Health Economics (192)
  • Health Informatics (633)
  • Health Policy (322)
  • Health Systems and Quality Improvement (208)
  • Hematology (85)
  • HIV/AIDS (156)
  • Infectious Diseases (except HIV/AIDS) (5362)
  • Intensive Care and Critical Care Medicine (332)
  • Medical Education (94)
  • Medical Ethics (24)
  • Nephrology (75)
  • Neurology (690)
  • Nursing (42)
  • Nutrition (115)
  • Obstetrics and Gynecology (127)
  • Occupational and Environmental Health (209)
  • Oncology (443)
  • Ophthalmology (140)
  • Orthopedics (36)
  • Otolaryngology (90)
  • Pain Medicine (35)
  • Palliative Medicine (17)
  • Pathology (130)
  • Pediatrics (196)
  • Pharmacology and Therapeutics (131)
  • Primary Care Research (84)
  • Psychiatry and Clinical Psychology (782)
  • Public and Global Health (1824)
  • Radiology and Imaging (325)
  • Rehabilitation Medicine and Physical Therapy (138)
  • Respiratory Medicine (255)
  • Rheumatology (86)
  • Sexual and Reproductive Health (69)
  • Sports Medicine (62)
  • Surgery (102)
  • Toxicology (23)
  • Transplantation (29)
  • Urology (37)