Abstract
Accurate prediction of COVID-19 related indicators such as confirmed cases, deaths and recoveries play an important in understanding the spread and impact of the virus, as well as resource planning and allocation. In this study, we approach the prediction problem from a statistical perspective and predict confirmed cases and deaths on a provincial level. We propose the compound Dirichlet Multinomial distribution to estimate the proportion parameter of each province as mutually exclusive outcomes. Furthermore, we make an assumption of exponential growth of the total cummulative counts in order to predict future total counts. The outcomes of this approach is not only prediction. The variation of the proportion parameter is characterised by the Dirichlet distribution, which provides insight in the movement of the pandemic across provinces over time.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
The authors received no specific funding for this work
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
NA
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
All data are fully available without restriction