Machine learning framework for predicting the presence of high-risk clonal haematopoiesis using complete blood count data: a population-based study of 431,531 UK Biobank participants
View ORCID ProfileWilliam G. Dunn, Isabella Withnell, Muxin Gu, Pedro Quiros, Sruthi Cheloor Kovilakam, Ludovica Marando, Sean Wen, Margarete A Fabre, Irina Mohorianu, Dragana Vuckovic, View ORCID ProfileGeorge S. Vassiliou
doi: https://doi.org/10.1101/2024.09.30.24314606
William G. Dunn
1Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
2Department of Haematology, University of Cambridge, Cambridge, UK
3Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, UK
MBChBIsabella Withnell
4Division of Biosciences, University College London, London, UK
MScMuxin Gu
1Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
2Department of Haematology, University of Cambridge, Cambridge, UK
PhDPedro Quiros
5Department of Biochemistry and Molecular Biology, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain
PhDSruthi Cheloor Kovilakam
1Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
2Department of Haematology, University of Cambridge, Cambridge, UK
PhDLudovica Marando
6Department of Hematology, Mayo Clinic, Rochester, MI, USA
MDSean Wen
7Centre for Genomics Research, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
DPhilMargarete A Fabre
2Department of Haematology, University of Cambridge, Cambridge, UK
3Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, UK
7Centre for Genomics Research, Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, UK
MBChBIrina Mohorianu
1Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
PhDDragana Vuckovic
8Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, London, UK
PhDGeorge S. Vassiliou
1Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
2Department of Haematology, University of Cambridge, Cambridge, UK
3Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge, UK
MBBSData Availability
All data used in this study are publicly available from the UK Biobank (https://www.ukbiobank.ac.uk/). Researchers may apply for access to the UK Biobank data via the Access Management System (https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access).
Posted September 30, 2024.
Machine learning framework for predicting the presence of high-risk clonal haematopoiesis using complete blood count data: a population-based study of 431,531 UK Biobank participants
William G. Dunn, Isabella Withnell, Muxin Gu, Pedro Quiros, Sruthi Cheloor Kovilakam, Ludovica Marando, Sean Wen, Margarete A Fabre, Irina Mohorianu, Dragana Vuckovic, George S. Vassiliou
medRxiv 2024.09.30.24314606; doi: https://doi.org/10.1101/2024.09.30.24314606
Machine learning framework for predicting the presence of high-risk clonal haematopoiesis using complete blood count data: a population-based study of 431,531 UK Biobank participants
William G. Dunn, Isabella Withnell, Muxin Gu, Pedro Quiros, Sruthi Cheloor Kovilakam, Ludovica Marando, Sean Wen, Margarete A Fabre, Irina Mohorianu, Dragana Vuckovic, George S. Vassiliou
medRxiv 2024.09.30.24314606; doi: https://doi.org/10.1101/2024.09.30.24314606
Subject Area
Subject Areas
- Addiction Medicine (380)
- Allergy and Immunology (695)
- Anesthesia (186)
- Cardiovascular Medicine (2809)
- Dermatology (241)
- Emergency Medicine (424)
- Epidemiology (12499)
- Forensic Medicine (10)
- Gastroenterology (796)
- Genetic and Genomic Medicine (4364)
- Geriatric Medicine (398)
- Health Economics (711)
- Health Informatics (2813)
- Health Policy (1042)
- Hematology (372)
- HIV/AIDS (888)
- Medical Education (411)
- Medical Ethics (113)
- Nephrology (460)
- Neurology (4130)
- Nursing (219)
- Nutrition (613)
- Oncology (2178)
- Ophthalmology (616)
- Orthopedics (253)
- Otolaryngology (316)
- Pain Medicine (260)
- Palliative Medicine (80)
- Pathology (482)
- Pediatrics (1166)
- Primary Care Research (480)
- Public and Global Health (6719)
- Radiology and Imaging (1475)
- Respiratory Medicine (893)
- Rheumatology (427)
- Sports Medicine (359)
- Surgery (468)
- Toxicology (57)
- Transplantation (197)
- Urology (173)