An artificial-intelligence interpretable tool to predict risk of deep vein thrombosis after endovenous thermal ablation
Azadeh Tabari, View ORCID ProfileYu Ma, Jesus Alfonso, Anthony Gebran, Haytham Kaafarani, Dimitris Bertsimas, Dania Daye
doi: https://doi.org/10.1101/2024.06.19.24309166
Azadeh Tabari
1Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
2Harvard Medical School, Boston, Massachusetts, United States of America
Yu Ma
3Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
Jesus Alfonso
3Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
Anthony Gebran
2Harvard Medical School, Boston, Massachusetts, United States of America
4Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, Massachusetts, United States of America
Haytham Kaafarani
2Harvard Medical School, Boston, Massachusetts, United States of America
4Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, Massachusetts, United States of America
Dimitris Bertsimas
3Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
Dania Daye
1Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
2Harvard Medical School, Boston, Massachusetts, United States of America
Data Availability
All data produced are available online at the American College of Surgeons National Surgical Quality Improvement Program database
https://www.facs.org/quality-programs/data-and-registries/acs-nsqip/
Posted June 20, 2024.
An artificial-intelligence interpretable tool to predict risk of deep vein thrombosis after endovenous thermal ablation
Azadeh Tabari, Yu Ma, Jesus Alfonso, Anthony Gebran, Haytham Kaafarani, Dimitris Bertsimas, Dania Daye
medRxiv 2024.06.19.24309166; doi: https://doi.org/10.1101/2024.06.19.24309166
An artificial-intelligence interpretable tool to predict risk of deep vein thrombosis after endovenous thermal ablation
Azadeh Tabari, Yu Ma, Jesus Alfonso, Anthony Gebran, Haytham Kaafarani, Dimitris Bertsimas, Dania Daye
medRxiv 2024.06.19.24309166; doi: https://doi.org/10.1101/2024.06.19.24309166
Subject Area
Subject Areas
- Addiction Medicine (354)
- Allergy and Immunology (678)
- Anesthesia (182)
- Cardiovascular Medicine (2678)
- Dermatology (227)
- Emergency Medicine (404)
- Epidemiology (12310)
- Forensic Medicine (10)
- Gastroenterology (769)
- Genetic and Genomic Medicine (4156)
- Geriatric Medicine (390)
- Health Economics (685)
- Health Informatics (2693)
- Health Policy (1010)
- Hematology (365)
- HIV/AIDS (861)
- Medical Education (401)
- Medical Ethics (110)
- Nephrology (444)
- Neurology (3931)
- Nursing (212)
- Nutrition (584)
- Oncology (2070)
- Ophthalmology (595)
- Orthopedics (243)
- Otolaryngology (307)
- Pain Medicine (253)
- Palliative Medicine (75)
- Pathology (473)
- Pediatrics (1130)
- Primary Care Research (461)
- Public and Global Health (6577)
- Radiology and Imaging (1420)
- Respiratory Medicine (876)
- Rheumatology (414)
- Sports Medicine (345)
- Surgery (455)
- Toxicology (54)
- Transplantation (189)
- Urology (169)