Machine Learning the Phenomenology of COVID-19 From Early Infection Dynamics
Malik Magdon-Ismail
doi: https://doi.org/10.1101/2020.03.17.20037309
Malik Magdon-Ismail
Computer Science Department, Rensselaer Ploytechnic Institute, 110 8th Street, Troy, NY 12180, USA

Data Availability
All data is publicly available.
Posted April 10, 2020.
Machine Learning the Phenomenology of COVID-19 From Early Infection Dynamics
Malik Magdon-Ismail
medRxiv 2020.03.17.20037309; doi: https://doi.org/10.1101/2020.03.17.20037309
Subject Area
Subject Areas
- Addiction Medicine (239)
- Allergy and Immunology (521)
- Anesthesia (124)
- Cardiovascular Medicine (1418)
- Dermatology (158)
- Emergency Medicine (291)
- Epidemiology (10288)
- Gastroenterology (527)
- Genetic and Genomic Medicine (2625)
- Geriatric Medicine (254)
- Health Economics (496)
- Health Informatics (1729)
- Health Policy (789)
- Hematology (266)
- HIV/AIDS (564)
- Medical Education (273)
- Medical Ethics (83)
- Nephrology (288)
- Neurology (2456)
- Nursing (144)
- Nutrition (377)
- Oncology (1320)
- Ophthalmology (400)
- Orthopedics (146)
- Otolaryngology (235)
- Pain Medicine (168)
- Palliative Medicine (51)
- Pathology (342)
- Pediatrics (778)
- Primary Care Research (296)
- Public and Global Health (4999)
- Radiology and Imaging (893)
- Respiratory Medicine (681)
- Rheumatology (309)
- Sports Medicine (244)
- Surgery (297)
- Toxicology (45)
- Transplantation (140)
- Urology (108)