A data-driven tool for tracking and predicting the course of COVID-19 epidemic as it evolves
Norden E. Huang, Fangli Qiao, Ka-Kit Tung
doi: https://doi.org/10.1101/2020.03.28.20046177
Norden E. Huang
#Data Analysis Laboratory, FIO, Qingdao 266061, China
Fangli Qiao
#Data Analysis Laboratory, FIO, Qingdao 266061, China
Ka-Kit Tung
*Department of Applied Mathematics, University of Washington, Seattle, WA 98195

Data Availability
All data used in this study are publicly available.
Posted March 30, 2020.
A data-driven tool for tracking and predicting the course of COVID-19 epidemic as it evolves
Norden E. Huang, Fangli Qiao, Ka-Kit Tung
medRxiv 2020.03.28.20046177; doi: https://doi.org/10.1101/2020.03.28.20046177
Subject Area
Subject Areas
- Addiction Medicine (216)
- Allergy and Immunology (495)
- Anesthesia (106)
- Cardiovascular Medicine (1096)
- Dermatology (141)
- Emergency Medicine (274)
- Epidemiology (9772)
- Gastroenterology (481)
- Genetic and Genomic Medicine (2312)
- Geriatric Medicine (223)
- Health Economics (462)
- Health Informatics (1561)
- Health Policy (736)
- Hematology (238)
- HIV/AIDS (504)
- Medical Education (238)
- Medical Ethics (67)
- Nephrology (257)
- Neurology (2144)
- Nursing (134)
- Nutrition (337)
- Oncology (1179)
- Ophthalmology (364)
- Orthopedics (128)
- Otolaryngology (220)
- Pain Medicine (146)
- Palliative Medicine (50)
- Pathology (311)
- Pediatrics (695)
- Primary Care Research (267)
- Public and Global Health (4661)
- Radiology and Imaging (778)
- Respiratory Medicine (624)
- Rheumatology (274)
- Sports Medicine (210)
- Surgery (252)
- Toxicology (43)
- Transplantation (120)
- Urology (94)