Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
Hideki Hozumi, View ORCID ProfileHideyuki Shimizu
doi: https://doi.org/10.1101/2022.11.02.22281835
Hideki Hozumi
1Keio University School of Medicine, Tokyo 160-8582, Japan
Hideyuki Shimizu
2Department of AI Systems Medicine, M&D Data Science Center, Tokyo Medical and Dental University, Tokyo 113-8510, Japan

Data Availability
All data produced in the present work are contained in the manuscript.
Posted November 04, 2022.
Bayesian network enables interpretable and state-of-the-art prediction of immunotherapy responses in cancer patients
Hideki Hozumi, Hideyuki Shimizu
medRxiv 2022.11.02.22281835; doi: https://doi.org/10.1101/2022.11.02.22281835
Subject Area
Subject Areas
- Addiction Medicine (216)
- Allergy and Immunology (495)
- Anesthesia (106)
- Cardiovascular Medicine (1101)
- Dermatology (141)
- Emergency Medicine (274)
- Epidemiology (9782)
- Gastroenterology (481)
- Genetic and Genomic Medicine (2318)
- Geriatric Medicine (223)
- Health Economics (463)
- Health Informatics (1563)
- Health Policy (737)
- Hematology (238)
- HIV/AIDS (507)
- Medical Education (239)
- Medical Ethics (67)
- Nephrology (258)
- Neurology (2148)
- Nursing (134)
- Nutrition (338)
- Oncology (1183)
- Ophthalmology (366)
- Orthopedics (129)
- Otolaryngology (220)
- Pain Medicine (148)
- Palliative Medicine (50)
- Pathology (313)
- Pediatrics (698)
- Primary Care Research (267)
- Public and Global Health (4673)
- Radiology and Imaging (781)
- Respiratory Medicine (624)
- Rheumatology (274)
- Sports Medicine (210)
- Surgery (252)
- Toxicology (43)
- Transplantation (120)
- Urology (94)