A Method to improve the Reliability of Saliency Scores applied to Graph Neural Network Models in Patient Populations
View ORCID ProfileJuan G. Diaz Ochoa, View ORCID ProfileFaizan E Mustafa
doi: https://doi.org/10.1101/2022.04.06.22273515
Juan G. Diaz Ochoa
1PMQD UG / Pelargusstr. 2, D-70180 Stuttgar Germany,
Faizan E Mustafa
2QUIBIQ GmbH / Heßbrühlstr. 11 D-70565 Stuttgart Germany,

Data Availability
All data produced in the present study are available upon reasonable request to the authors
Posted April 13, 2022.
A Method to improve the Reliability of Saliency Scores applied to Graph Neural Network Models in Patient Populations
Juan G. Diaz Ochoa, Faizan E Mustafa
medRxiv 2022.04.06.22273515; doi: https://doi.org/10.1101/2022.04.06.22273515
Subject Area
Subject Areas
- Addiction Medicine (407)
- Allergy and Immunology (718)
- Anesthesia (212)
- Cardiovascular Medicine (3022)
- Dermatology (256)
- Emergency Medicine (451)
- Epidemiology (12932)
- Forensic Medicine (12)
- Gastroenterology (844)
- Genetic and Genomic Medicine (4730)
- Geriatric Medicine (437)
- Health Economics (744)
- Health Informatics (3001)
- Health Policy (1085)
- Hematology (403)
- HIV/AIDS (950)
- Medical Education (445)
- Medical Ethics (117)
- Nephrology (484)
- Neurology (4517)
- Nursing (240)
- Nutrition (665)
- Oncology (2346)
- Ophthalmology (664)
- Orthopedics (262)
- Otolaryngology (331)
- Pain Medicine (294)
- Palliative Medicine (85)
- Pathology (509)
- Pediatrics (1222)
- Primary Care Research (513)
- Public and Global Health (7103)
- Radiology and Imaging (1577)
- Respiratory Medicine (936)
- Rheumatology (455)
- Sports Medicine (393)
- Surgery (501)
- Toxicology (63)
- Transplantation (215)
- Urology (187)