Estimating the hidden burden of bovine tuberculosis in Great Britain

PLoS Comput Biol. 2012;8(10):e1002730. doi: 10.1371/journal.pcbi.1002730. Epub 2012 Oct 18.

Abstract

The number of cattle herds placed under movement restrictions in Great Britain (GB) due to the suspected presence of bovine tuberculosis (bTB) has progressively increased over the past 25 years despite an intensive and costly test-and-slaughter control program. Around 38% of herds that clear movement restrictions experience a recurrent incident (breakdown) within 24 months, suggesting that infection may be persisting within herds. Reactivity to tuberculin, the basis of diagnostic testing, is dependent on the time from infection. Thus, testing efficiency varies between outbreaks, depending on weight of transmission and cannot be directly estimated. In this paper, we use Approximate Bayesian Computation (ABC) to parameterize two within-herd transmission models within a rigorous inferential framework. Previous within-herd models of bTB have relied on ad-hoc methods of parameterization and used a single model structure (SORI) where animals are assumed to become detectable by testing before they become infectious. We study such a conventional within-herd model of bTB and an alternative model, motivated by recent animal challenge studies, where there is no period of epidemiological latency before animals become infectious (SOR). Under both models we estimate that cattle-to-cattle transmission rates are non-linearly density dependent. The basic reproductive ratio for our conventional within-herd model, estimated for scenarios with no statutory controls, increases from 1.5 (0.26-4.9; 95% CI) in a herd of 30 cattle up to 4.9 (0.99-14.0) in a herd of 400. Under this model we estimate that 50% (33-67) of recurrent breakdowns in Britain can be attributed to infection missed by tuberculin testing. However this figure falls to 24% (11-42) of recurrent breakdowns under our alternative model. Under both models the estimated extrinsic force of infection increases with the burden of missed infection. Hence, improved herd-level testing is unlikely to reduce recurrence unless this extrinsic infectious pressure is simultaneously addressed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animal Husbandry
  • Animals
  • Cattle
  • Disease Outbreaks / statistics & numerical data
  • Disease Outbreaks / veterinary*
  • Models, Biological*
  • Tuberculosis, Bovine / epidemiology*
  • Tuberculosis, Bovine / transmission
  • United Kingdom / epidemiology

Grants and funding

This work was funded by Defra, United Kingdom under contract SE3230. AJKC was funded under this grant (PI/T/WL/07/46), sponsored by the Veterinary Laboratories Agency. JLNW was also supported by the Alborada Trust and the RAPIDD program of the Science & Technology Directorate, Department of Homeland Security. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.