Analysis of Spatial Spread Relationships of Coronavirus (COVID-19) Pandemic in the World using Self Organizing Maps

Chaos Solitons Fractals. 2020 Sep:138:109917. doi: 10.1016/j.chaos.2020.109917. Epub 2020 May 21.

Abstract

We describe in this paper an analysis of the spatial evolution of coronavirus pandemic around the world by using a particular type of unsupervised neural network, which is called self-organizing maps. Based on the clustering abilities of self-organizing maps we are able to spatially group together countries that are similar according to their coronavirus cases, in this way being able to analyze which countries are behaving similarly and thus can benefit by using similar strategies in dealing with the spread of the virus. Publicly available datasets of coronavirus cases around the globe from the last months have been used in the analysis. Interesting conclusions have been obtained, that could be helpful in deciding the best strategies in dealing with this virus. Most of the previous papers dealing with data of the Coronavirus have viewed the problem on temporal aspect, which is also important, but this is mainly concerned with the forecast of the numeric information. However, we believe that the spatial aspect is also important, so in this view the main contribution of this paper is the use of unsupervised self-organizing maps for grouping together similar countries in their fight against the Coronavirus pandemic, and thus proposing that strategies for similar countries could be established accordingly.

Keywords: Coronavirus; Neural Networks; Self-Organizing Maps; Spatial Similarity.