Telomerase reverse transcriptase mediates EMT through NF-κB signaling in tongue squamous cell carcinoma

Oncotarget. 2017 Sep 14;8(49):85492-85503. doi: 10.18632/oncotarget.20888. eCollection 2017 Oct 17.

Abstract

Locoregional lymph nodes metastasis in oral tongue squamous cell carcinoma represents one of important and common prognostic factors for poor clinical outcome. The human Telomerase Reverse Transcriptase (hTERT) is one of key players in cancer metastasis and stemness, but its exact function in tongue squamous cell carcinoma remains unknown. Here, we aim to understand the role of hTERT by utilizing the CRISPR/Cas9 gene editing system to deplete hTERT in the SCC-15 cell line. Functional comparison of SCC-15 control and knockout cells (hTERT-/-) showed that loss of hTERT suppressed cell proliferation and migration/invasion. Furthermore, hTERT depletion significantly decreased tumorigenesis, including alterations in cellular morphology that areindicative for epithelial-mesenchymal transition (EMT). Mechanistically we demonstrated that the hTERT knockout attenuates NF-κB signaling via a negative feedback regulation in tumorprogression. From these results we propose a novel molecular mechanism of hTERT to promote SCC-15 invasion and metastasis via NF-κB activation. We conclude that targeting hTERT may represent a new therapeutic strategy to improve therapy and survival of tongue squamous cell carcinoma patients.

Keywords: CRISPR/Cas9; EMT; NF-κB; OTSCC; hTERT.