Structural length-scale sensitivities of reflectance measurements in continuous random media under the Born approximation

Opt Lett. 2012 Dec 15;37(24):5220-2. doi: 10.1364/OL.37.005220.

Abstract

Which range of structures contributes to light scattering in a continuous random media, such as biological tissue? In this Letter, we present a model to study the structural length-scale sensitivity of scattering in continuous random media under the Born approximation. The scattering coefficient μs, backscattering coefficient μb, anisotropy factor g, and reduced scattering coefficient μs* as well as the shape of the spatial reflectance profile are calculated under this model. For media with a biologically relevant Henyey-Greenstein phase function with g∼0.93 at wavelength λ=633 nm, we report that μs* is sensitive to structural length-scales from 46.9 nm to 2.07 μm (i.e., λ/13 to 3λ), μb is sensitive from 26.7 to 320 nm (i.e., λ/24 to λ/2), and the spatial reflectance profile is sensitive from 30.8 nm to 2.71 μm (i.e., λ/21 to 4λ).

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Computer Simulation
  • Humans
  • Light*
  • Models, Biological*
  • Models, Statistical*
  • Nephelometry and Turbidimetry / methods*
  • Photometry / methods*
  • Scattering, Radiation