The multi-component model of working memory: explorations in experimental cognitive psychology

Neuroscience. 2006 Apr 28;139(1):5-21. doi: 10.1016/j.neuroscience.2005.12.061. Epub 2006 Mar 6.

Abstract

There are a number of ways one can hope to describe and explain cognitive abilities, each of them contributing a unique and valuable perspective. Cognitive psychology tries to develop and test functional accounts of cognitive systems that explain the capacities and properties of cognitive abilities as revealed by empirical data gathered by a range of behavioral experimental paradigms. Much of the research in the cognitive psychology of working memory has been strongly influenced by the multi-component model of working memory [Baddeley AD, Hitch GJ (1974) Working memory. In: Recent advances in learning and motivation, Vol. 8 (Bower GA, ed), pp 47-90. New York: Academic Press; Baddeley AD (1986) Working memory. Oxford, UK: Clarendon Press; Baddeley A. Working memory: Thought and action. Oxford: Oxford University Press, in press]. By expanding the notion of a passive short-term memory to an active system that provides the basis for complex cognitive abilities, the model has opened up numerous questions and new lines of research. In this paper we present the current revision of the multi-component model that encompasses a central executive, two unimodal storage systems: a phonological loop and a visuospatial sketchpad, and a further component, a multimodal store capable of integrating information into unitary episodic representations, termed episodic buffer. We review recent empirical data within experimental cognitive psychology that has shaped the development of the multicomponent model and the understanding of the capacities and properties of working memory. Research based largely on dual-task experimental designs and on neuropsychological evidence has yielded valuable information about the fractionation of working memory into independent stores and processes, the nature of representations in individual stores, the mechanisms of their maintenance and manipulation, the way the components of working memory relate to each other, and the role they play in other cognitive abilities. With many questions still open and new issues emerging, we believe that the multicomponent model will continue to stimulate research while providing a comprehensive functional description of working memory.

Publication types

  • Review

MeSH terms

  • Brain / physiology*
  • Cognition / physiology
  • Cognitive Science / methods
  • Cognitive Science / trends*
  • Humans
  • Memory, Short-Term / physiology*
  • Models, Neurological
  • Neuropsychology / methods
  • Neuropsychology / trends
  • Neurosciences / methods
  • Neurosciences / trends*