Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells

FASEB J. 2003 Jul;17(10):1310-2. doi: 10.1096/fj.02-0883fje. Epub 2003 May 8.

Abstract

Hydrogen sulfide (H2S), produced by commensal sulfate-reducing bacteria, is an environmental insult that potentially contributes to chronic intestinal epithelial disorders. We tested the hypothesis that exposure of nontransformed intestinal epithelial cells (IEC-18) to the reducing agent sodium hydrogen sulfide (NaHS) activates molecular pathways that underlie epithelial hyperplasia, a phenotype common to both ulcerative colitis (UC) and colorectal cancer. Exposure of IEC-18 cells to NaHS rapidly increased the NADPH/NADP ratio, reduced the intracellular redox environment, and inhibited mitochondrial respiratory activity. The addition of 0.2-5 mM NaHS for 4 h increased the IEC-18 proliferative cell fraction (P<0.05), as evidenced by analysis of the cell cycle and proliferating cell nuclear antigen expression, while apoptosis occurred only at the highest concentration of NaHS. Thirty minutes of NaHS exposure increased (P<0.05) c-Jun mRNA concentrations, consistent with the observed activation of mitogen activated protein kinases (MAPK). Microarray analysis confirmed an increase (P<0.05) in MAPK-mediated proliferative activity, likely reflecting the reduced redox environment of NaHS-treated cells. These data identify functional pathways by which H2S may initiate epithelial dysregulation and thereby contribute to UC or colorectal cancer. Thus, it becomes crucial to understand how genetic background may affect epithelial responsiveness to this bacterial-derived environmental insult.

MeSH terms

  • Animals
  • Cell Cycle / drug effects
  • Cell Division
  • Cell Line
  • Culture Media
  • Dose-Response Relationship, Drug
  • Epithelial Cells / drug effects
  • Epithelial Cells / metabolism
  • Gene Expression Profiling
  • Hydrogen Sulfide / pharmacology*
  • Intestinal Mucosa / metabolism*
  • MAP Kinase Signaling System
  • Mitogen-Activated Protein Kinases / antagonists & inhibitors
  • Models, Biological
  • Oligonucleotide Array Sequence Analysis
  • Oxidation-Reduction / drug effects
  • Proliferating Cell Nuclear Antigen / metabolism
  • Proto-Oncogene Proteins c-jun / biosynthesis
  • Proto-Oncogene Proteins c-jun / genetics
  • RNA, Messenger / biosynthesis
  • Rats

Substances

  • Culture Media
  • Proliferating Cell Nuclear Antigen
  • Proto-Oncogene Proteins c-jun
  • RNA, Messenger
  • Mitogen-Activated Protein Kinases
  • Hydrogen Sulfide