Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 15, 2018

Amyloid toxicity in Alzheimer’s disease

  • Allison B. Reiss EMAIL logo , Hirra A. Arain , Mark M. Stecker , Nicolle M. Siegart and Lora J. Kasselman

Abstract

A major feature of Alzheimer’s disease (AD) pathology is the plaque composed of aggregated amyloid-β (Aβ) peptide. Although these plaques may have harmful properties, there is much evidence to implicate soluble oligomeric Aβ as the primary noxious form. Aβ oligomers can be generated both extracellularly and intracellularly. Aβ is toxic to neurons in a myriad of ways. It can cause pore formation resulting in the leakage of ions, disruption of cellular calcium balance, and loss of membrane potential. It can promote apoptosis, cause synaptic loss, and disrupt the cytoskeleton. Current treatments for AD are limited and palliative. Much research and effort is being devoted to reducing Aβ production as an approach to slowing or preventing the development of AD. Aβ formation results from the amyloidogenic cleavage of human amyloid precursor protein (APP). Reconfiguring this process to disfavor amyloid generation might be possible through the reduction of APP or inhibition of enzymes that convert the precursor protein to amyloid.

Acknowledgments

This work was supported by the Herb and Evelyn Abrams Family Amyloid Research Fund, the Alzheimer’s Foundation of America, the Alzheimer’s Disease Resource Center, and the Elizabeth Daniell Research Fund.

  1. Conflict of interest statement: The authors declare that they have no conflict of interests.

References

Ahmad, S.S., Akhtar, S., Jamal, Q.M., Rizvi, S.M., Kamal, M.A., Khan, M.K., and Siddiqui, M.H. (2016). Multiple targets for the management of Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 15, 1279–1289.10.2174/1871527315666161003165855Search in Google Scholar PubMed

Alvarez, V.A. and Sabatini, B.L. (2007). Anatomical and physiological plasticity of dendritic spines. Annu. Rev. Neurosci. 30, 79–97.10.1146/annurev.neuro.30.051606.094222Search in Google Scholar PubMed

Arimon, M., Takeda, S., Post, K.L., Svirsky, S., Hyman, B.T., and Berezovska, O. (2015). Oxidative stress and lipid peroxidation are upstream of amyloid pathology. Neurobiol. Dis. 84, 109–119.10.1016/j.nbd.2015.06.013Search in Google Scholar PubMed

Arispe, N., Diaz, J., Durell, S.R., Shafrir, Y., and Guy, H.R. (2010). Polyhistidine peptide inhibitor of the Abeta calcium channel potently blocks the Abeta-induced calcium response in cells. Theoretical modeling suggests a cooperative binding process. Biochemistry. 49, 7847–7853.10.1021/bi1006833Search in Google Scholar

Babcock, A.A., Ilkjaer, L., Clausen, B.H., Villadsen, B., Dissing-Olesen, L., Bendixen, A.T., Lych, L., Lambertsen, K.L., and Finsen, B. (2015). Cytokine-producing microglia have an altered β-amyloid load in aged APP/PS1 Tg mice. Brain Behav. Immun. 48, 86–101.10.1016/j.bbi.2015.03.006Search in Google Scholar PubMed

Bales, K.R., Liu, F., Wu, S., Lin, S., Koger, D., DeLong, C., Hansen, J.C., Sullivan, P.M., and Paul, S.M. (2009). Human APOE isoform-dependent effects on brain β-amyloid levels in PDAPP transgenic mice. J. Neurosci. 29, 6771–6779.10.1523/JNEUROSCI.0887-09.2009Search in Google Scholar PubMed

Bao, F., Wicklund, L., Lacor, P.N., Klein, W.L., Nordberg, A., and Marutle, A. (2012). Different β-amyloid oligomer assemblies in Alzheimer brains correlate with age of disease onset and impaired cholinergic activity. Neurobiol. Aging 33, 825.e1–825.e13.10.1016/j.neurobiolaging.2011.05.003Search in Google Scholar

Barnes, D.E. and Yaffe, K. (2011). The projected effect of risk factor reduction on Alzheimer’s disease prevalence. Lancet Neurol. 10, 819–828.10.1016/S1474-4422(11)70072-2Search in Google Scholar PubMed

Barry, A.E., Klyubin, I., Mc Donald, J.M., Mably, A.J., Farrell, M.A., Scott, M., Walsh, D.M., and Rowan, M.J. (2011). Alzheimer’s disease brain-derived amyloid-β-mediated inhibition of LTP in vivo is prevented by immunotargeting cellular prion protein. J. Neurosci. 31, 7259–7263.10.1523/JNEUROSCI.6500-10.2011Search in Google Scholar PubMed PubMed Central

Beffert, U., Nematollah Farsian, F., Masiulis, I., Hammer, R.E., Yoon, S.O., Giehl, K.M., and Herz, J. (2006). ApoE receptor 2 controls neuronal survival in the adult brain. Curr. Biol. 16, 2446–2452.10.1016/j.cub.2006.10.029Search in Google Scholar PubMed

Beisiegel, U., Weber, W., Ihrke, G., Herz, J., and Stanley, K.K. (1989). The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature 341, 162–164.10.1038/341162a0Search in Google Scholar PubMed

Benilova, I., Karran, E., and De Strooper, B. (2012). The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Neurosci. 15, 349–357.10.1038/nn.3028Search in Google Scholar PubMed

Berger, Z., Roder, H., Hanna, A., Carlson, A., Rangachari, V., Yue, M., Wszolek, Z., Ashe, K., Knight, J., Dickson, D., et al. (2007). Accumulation of pathological τ species and memory loss in a conditional model of tauopathy. J. Neurosci. 27, 3650–3662.10.1523/JNEUROSCI.0587-07.2007Search in Google Scholar

Bi, X., Gall, C.M., Zhou, J., and Lynch, G. (2002). Uptake and pathogenic effects of amyloid β peptide 1-42 are enhanced by integrin antagonists and blocked by NMDA receptor antagonists. Neuroscience 112, 827–840.10.1016/S0306-4522(02)00132-XSearch in Google Scholar PubMed

Bibl, M., Mollenhauer, B., Esselmann, H., Lewczuk, P., Klafki, H.W., Sparbier, K., Smirnov, A., Cepek, L., Trenkwalder, C., Ruther, E., et al. (2006). CSF amyloid-β-peptides in Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease dementia. Brain 129, 1177–1187.10.1093/brain/awl063Search in Google Scholar PubMed PubMed Central

Billups, B. and Forsythe, I.D. (2002). Presynaptic mitochondrial calcium sequestration influences transmission at mammalian central synapses. J. Neurosci. 22, 5840–5847.10.1523/JNEUROSCI.22-14-05840.2002Search in Google Scholar PubMed

Bobba, A., Amadoro, G., Valenti, D., Corsetti, V., Lassandro, R., and Atlante, A. (2013). Mitochondrial respiratory chain complexes I and IV are impaired by β-amyloid via direct interaction and through complex I-dependent ROS production, respectively. Mitochondrion 13, 298–311.10.1016/j.mito.2013.03.008Search in Google Scholar PubMed

Boehm-Cagan, A. and Michaelson, D.M. (2014). Reversal of apoE4-driven brain pathology and behavioral deficits by bexarotene. J. Neurosci. 34, 7293–7301.10.1523/JNEUROSCI.5198-13.2014Search in Google Scholar PubMed PubMed Central

Bossy, B., Petrilli, A., Klinglmayr, E., Chen, J., Lütz-Meindl, U., Knott, A.B., Masliah, E., Schwarzenbacher, R., and Bossy-Wetzel, E. (2010). S-nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer’s disease. J. Alzheimers Dis. 20, S513–S526.10.3233/JAD-2010-100552Search in Google Scholar PubMed PubMed Central

Brown, D.A. and London, E. (2000). Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221–17224.10.1074/jbc.R000005200Search in Google Scholar PubMed

Bu, Z., Shi, Y., Callaway, D.J., and Tycko, R. (2007). Molecular alignment within β-sheets in Aβ(14–23) fibrils: solid-state NMR experiments and theoretical predictions. Biophys. J. 92, 594–602.10.1529/biophysj.106.091017Search in Google Scholar PubMed PubMed Central

Butterfield, S.M. and Lashuel, H.A. (2010). Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. Angew Chem. Int. Ed. 49, 5628–5654.10.1002/anie.200906670Search in Google Scholar PubMed

Casley, C.S., Canevari, L., Land, J.M., Clark, J.B., and Sharpe, M.A. (2002). β-Amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J. Neurochem. 80, 91–100.10.1046/j.0022-3042.2001.00681.xSearch in Google Scholar PubMed

Caspersen, C., Wang, N., Yao, J., Sosunov, A., Chen, X., Lustbader, J.W., Xu, H.W., Stern, D., McKhann, G., and Yan, S.D. (2005). Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J. 19, 2040–2041.10.1096/fj.05-3735fjeSearch in Google Scholar PubMed

Castellano, J.M., Kim, J., Stewart, F.R., Jiang, H., DeMattos, R.B., Patterson, B.W., Fagan, A.M., Morris, J.C., Mawuenyega, K.G., Cruchaga, C., et al. (2011). Human apoE isoforms differentially regulate brain amyloid-β peptide clearance. Sci. Transl. Med. 3, 89ra57.10.1126/scitranslmed.3002156Search in Google Scholar PubMed PubMed Central

Caughey, B. and Lansbury, P.T. (2003). Protofibrils, pores, fibrils, and neurodegeneration. Separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26, 267–298.10.1146/annurev.neuro.26.010302.081142Search in Google Scholar PubMed

Cenini, G., Rüb, C., Bruderek, M., and Voos, W. (2016). Amyloid β-peptides interfere with mitochondrial preprotein import competence by a coaggregation process. Mol. Biol. Cell 27, 3257–3272.10.1091/mbc.e16-05-0313Search in Google Scholar PubMed PubMed Central

Cerpa, W., Dinamarca, M.C., and Inestrosa, N.C. (2008). Structure-function implications in Alzheimer’s disease: effect of Aβ oligomers at central synapses. Curr. Alzheimer Res. 5, 233–243.10.2174/156720508784533321Search in Google Scholar PubMed

Chan, R.B., Oliveira, T.G., Cortes, E.P., Honig, L.S., Duff, K.E., Small, S.A., Wenk, M.R., Shui, G., and Di Paolo, G. (2012). Comparative lipidomic analysis of mouse and human brain with Alzheimer disease. J. Biol. Chem. 287, 2678–2688.10.1074/jbc.M111.274142Search in Google Scholar PubMed PubMed Central

Chang, E.H., Savage, M.J., Flood, D.G., Thomas, J.M., Levy, R.B., Mahadomrongkul, V., Shirao, T., Aoki, C., and Huerta, P.T. (2006). AMPA receptor downscaling at the onset of Alzheimer’s disease pathology in double knockin mice. Proc. Natl. Acad. Sci. USA. 203, 3410–3415.10.1073/pnas.0507313103Search in Google Scholar PubMed PubMed Central

Cho, D.H., Nakamura, T., Fang, J., Cieplak, P., Godzik, A., Gu, Z., and Lipton, S.A. (2009). S-nitrosylation of DRP1 mediates β-amyloid-related mitochondrial fission and neuronal injury. Science 324, 102–105.10.1126/science.1171091Search in Google Scholar PubMed PubMed Central

Cleary, J.P., Walsh, D.M., Hofmeister, J.J., Shankar, G.M., Kuskowski, M.A., Selkoe, D.J., and Ashe, K.H. (2005). Natural oligomers of the amyloid-beta protein specifically disrupt cognitive function. Nat. Neurosci. 8, 79–84.10.1038/nn1372Search in Google Scholar PubMed

Coleman, P.D. and Yao, P.J. (2003). Synaptic slaughter in Alzheimer’s disease. Neurobiol. Aging 24, 1023–1027.10.1016/j.neurobiolaging.2003.09.001Search in Google Scholar PubMed

Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., Roses, A.D., Haines, J.L., and Pericak-Vance, M.A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261, 921–923.10.1126/science.8346443Search in Google Scholar PubMed

Daria, A., Colombo, A., Llovera, G., Hampel, H., Willem, M., Liesz, A., Haass, C., and Tahirovic, S. (2017). Young microglia restore amyloid plaque clearance of aged microglia. EMBO J. 36, 583–603.10.15252/embj.201694591Search in Google Scholar PubMed PubMed Central

Dean, D.C. 3rd, Jerskey, B.A., Chen, K., Protas, H., Thiyyagura, P., Roontiva, A., O’Muircheartaigh, J., Dirks, H., Waskiewicz, N., Lehman, K., et al. (2014). Brain differences in infants at differential genetic risk for late-onset Alzheimer disease: a cross-sectional imaging study. J. Am. Med. Assoc. Neurol. 71, 11–22.10.1001/jamaneurol.2013.4544Search in Google Scholar PubMed PubMed Central

Deane, R., Sagare, A., Hamm, K., Parisi, M., Lane, S., Finn, M.B., Holtzman, D.M., and Zlokovic, B.V. (2008). apoE isoform-specific disruption of amyloid β peptide clearance from mouse brain. J. Clin. Invest. 118, 4002–4013.10.1172/JCI36663Search in Google Scholar PubMed PubMed Central

Devi, L., Prabhu, B.M., Galati, D.F., Avadhani, N.G., and Anandatheerthavarada, H.K. (2006). Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J. Neurosci. 26, 9057–9068.10.1523/JNEUROSCI.1469-06.2006Search in Google Scholar PubMed PubMed Central

Di Domenico, F., Pupo, G., Giraldo, E., Badìa, M.C., Monllor, P., Lloret, A., Eugenia Schininà, M., Giorgi, A., Cini, C., Tramutola, A., et al. (2015). Oxidative signature of cerebrospinal fluid from mild cognitive impairment and Alzheimer disease patients. Free Radic. Biol. Med. 91, 1–9.10.1016/j.freeradbiomed.2015.12.004Search in Google Scholar PubMed

Dickson, D.W., Farlo, J., Davies, P., Crystal, H., Fuld, P., and Yen, S.H. (1988). Alzheimer’s disease. A double-labeling immunohistochemical study of senile plaques. Am. J. Pathol. 132, 86–101.Search in Google Scholar PubMed

Dragicevic, N., Mamcarz, M., Zhu, Y., Buzzeo, R., Tan, J., Arendash, G.W., and Bradshaw, P.C. (2010). Mitochondrial amyloid-β levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer’s transgenic mice. J. Alzheimers Dis. 20, S535–S550.10.3233/JAD-2010-100342Search in Google Scholar PubMed

Du, H., Guo, L., Yan, S., Sosunov, A.A., McKhann, G.M., and Yan, S.S. (2010). Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc. Natl. Acad. Sci. USA. 107, 18670–18675.10.1073/pnas.1006586107Search in Google Scholar PubMed PubMed Central

Dykens, J.A. (1994). Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated Ca2+ and Na+: implications for neurodegeneration. J. Neurochem. 63, 584–591.10.1046/j.1471-4159.1994.63020584.xSearch in Google Scholar PubMed

Eckert, A., Schmitt, K., and Götz, J. (2011). Mitochondrial dysfunction – the beginning of the end in Alzheimer’s disease? Separate and synergistic modes of τ and amyloid-β toxicity. Alzheimers Res. Ther. 3, 15.10.1186/alzrt74Search in Google Scholar PubMed PubMed Central

Ehehalt, R., Keller, P., Haass, C., Thiele, C., and Simons, K. (2003). Amyloidogenic processing of the Alzheimer β-amyloid precursor protein depends on lipid rafts. J. Cell. Biol. 160, 113–123.10.1083/jcb.200207113Search in Google Scholar PubMed PubMed Central

Farrer, L.A., Cupples, L.A., Haines, J.L., Hyman, B., Kukull, W.A., Mayeux, R., Myers, R.H., Pericak-Vance, M.A., Risch, N., and van Duijn, C.M. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. J. Am. Med. Assoc. 278, 1349–1356.10.1001/jama.1997.03550160069041Search in Google Scholar

Fernández-Morales, J.C., Arranz-Tagarro, J.A., Calvo-Gallardo, E., Maroto, M., Padín, J.F., and García, A.G. (2012). Stabilizers of neuronal and mitochondrial calcium cycling as a strategy for developing a medicine for Alzheimer’s disease. ACS Chem. Neurosci. 3, 873–883.10.1021/cn3001069Search in Google Scholar PubMed PubMed Central

Ferreira, I.L., Ferreiro, E., Schmidt, J., Cardoso, J.M., Pereira, C.M., Carvalho, A.L., Oliveira, C.R., and Rego, A.C. (2015). Aβ and NMDAR activation cause mitochondrial dysfunction involving ER calcium release. Neurobiol. Aging 36, 680–692.10.1016/j.neurobiolaging.2014.09.006Search in Google Scholar PubMed

Ferreiro, E., Oliveira, C.R., and Pereira, C.M. (2008). The release of calcium from the endoplasmic reticulum induced by amyloid-β and prion peptides activates the mitochondrial apoptotic pathway. Neurobiol. Dis. 30, 331–342.10.1016/j.nbd.2008.02.003Search in Google Scholar PubMed

Floden, A.M. and Combs, C.K. (2011). Microglia demonstrate age-dependent interaction with amyloid-β fibrils. J. Alzheimers Dis. 25, 279–293.10.3233/JAD-2011-101014Search in Google Scholar PubMed PubMed Central

Forny-Germano, L., Lyra e Silva, N.M., Batista, A.F., Brito-Moreira, J., Gralle, M., Boehnke, S.E., Coe, B.C., Lablans, A., Marques, S.A., Martinez, A.M., et al. (2014). Alzheimer’s disease-like pathology induced by amyloid-β oligomers in nonhuman primates. J. Neurosci. 34, 13629–13643.10.1523/JNEUROSCI.1353-14.2014Search in Google Scholar PubMed PubMed Central

Garcia-Alloza, M., Dodwell, S.A., Meyer-Luehmann, M., Hyman, B.T., and Bacskai, B.J. (2006). Plaque-derived oxidative stress mediates distorted neurite trajectories in the Alzheimer mouse model. J. Neuropathol. Exp. Neurol. 65, 1082–1089.10.1097/01.jnen.0000240468.12543.afSearch in Google Scholar PubMed

Geula, C., Wu, C.-K., Saroff, D., Lorenzo, A., Yuan, M., and Yankner, B.A. (1998). Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nat. Med. 4, 827–831.10.1038/nm0798-827Search in Google Scholar PubMed

Gibson, G.E., Blass, J.P., Beal, M.F., and Bunik, V. (2005). The α-ketoglutarate-dehydrogenase complex: a mediator between mitochondria and oxidative stress in neurodegeneration. Mol. Neurobiol. 31, 43–63.10.1385/MN:31:1-3:043Search in Google Scholar PubMed

Giuffrida, M.L., Caraci, F., Pignataro, B., Cataldo, S., De Bona, P., Bruno, V., Molinaro, G., Pappalardo, G., Messina, A., Palmigiano, A., et al. (2009). β-Amyloid monomers are neuroprotective. J. Neurosci. 29, 10582–10587.10.1523/JNEUROSCI.1736-09.2009Search in Google Scholar PubMed PubMed Central

Glabe, C.G. (2008). Structural classification of toxic amyloid oligomers. J. Biol. Chem. 283, 29639–29643.10.1074/jbc.R800016200Search in Google Scholar PubMed PubMed Central

Gomes, G.M., Dalmolin, G.D., Bär, J., Karpova, A., Mello, C.F., Kreutz, M.R., and Rubin, M.A. (2014). Inhibition of the polyamine system counteracts β-amyloid peptide-induced memory impairment in mice: involvement of extrasynaptic NMDA receptors. PLoS One 9, e99184.10.1371/journal.pone.0099184Search in Google Scholar PubMed PubMed Central

Grathwohl, S.A., Kälin, R.E., Bolmont, T., Prokop, S., Winkelmann, G., Kaeser, S.A., Odenthal, J., Radde, R., Eldh, T., Gandy, S., et al. (2016). Amyloid-β peptide Aβ 3pE-42 induces lipid peroxidation, membrane permeabilization, and calcium influx in neurons. J. Biol. Chem. 291, 6134–6145.10.1074/jbc.M115.655183Search in Google Scholar PubMed PubMed Central

Gunn, A.P., Wong, B.X., Johanssen, T., Griffith, J.C., Masters, C.L., Bush, A.I., Barnham, K.J., Duce, J.A., and Cherny, R.A. (2016). Amyloid-β peptide Aβ3pE-42 induces lipid peroxidation, membrane permeabilization, and calcium influx in neurons. J. Biol. Chem. 291, 6134–6145.10.1074/jbc.M115.655183Search in Google Scholar PubMed

Hansson Petersen, C.A., Alikhani, N., Behbahani, H., Wiehager, B., Pavlov, P.F., Alafuzoff, I., Leinonen, V., Ito, A., Winblad, B., Glaser, E., et al. (2008). The amyloid β-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc. Natl. Acad. Sci. USA. 105, 13145–13150.10.1073/pnas.0806192105Search in Google Scholar PubMed PubMed Central

Hattori, C., Asai, M., Onishi, H., Sasagawa, N., Hashimoto, Y., Saido, T.C., Maruyama, K., Mizutani, S., and Ishiura, S. (2006). BACE1 interacts with lipid raft proteins. J. Neurosci. Res. 84, 912–917.10.1002/jnr.20981Search in Google Scholar PubMed

Hauptmann, S., Scherping, I., Dröse, S., Brandt, U., Schulz, K.L., Jendrach, M., Leuner, K., Eckert, A., and Müller, W.E. (2008). Mitochondrial dysfunction: an early event in Alzheimer pathology accumulates with age in AD transgenic mice. Neurobiol. Aging 30, 1574–1586.10.1016/j.neurobiolaging.2007.12.005Search in Google Scholar PubMed

He, Y., Zheng, M.M., Ma, Y., Han, X.J., Ma, X.Q., Qu, C.Q., and Du, Y.F. (2012). Soluble oligomers and fibrillar species of amyloid β-peptide differentially affect cognitive functions and hippocampal inflammatory response. Biochem. Biophys. Res. Commun. 429, 125–130.10.1016/j.bbrc.2012.10.129Search in Google Scholar PubMed

Hensely, K., Hall, N., Subramaniam, R., Cole, P., Harris, M., Aksenov, M., Gabbita, S.P., Wu, J.F., Carney, J.M., Lovell, M., et al. (1995). Brain regional correspondence between Alzheimer’s disease histopathology and biomarkers of protein oxidation. J. Neurochem. 65, 2146–2156.10.1046/j.1471-4159.1995.65052146.xSearch in Google Scholar PubMed

Heppner, F.L. and Jucker, M. (2009). Formation and maintenance of Alzheimer’s disease β-amyloid plaques in the absence of microglia. Nat. Neurosci. 12, 1361–1363.10.1038/nn.2432Search in Google Scholar PubMed PubMed Central

Hernandez-Zimbron, L.F., Luna-Muñoz, J., Mena, R., Vazquez-Ramirez, R., Kubli-Garfias, C., Cribbs, D.H., Manoutcharian, K., and Gevorkian, G. (2012). Amyloid-β peptide binds to cytochrome c oxidase subunit 1. PLoS One 7, e42344.10.1371/journal.pone.0042344Search in Google Scholar PubMed PubMed Central

Hickman, S.E., Allison, E.K., and El Khoury, J. (2008). Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. J. Neurosci. 28, 8354–8360.10.1523/JNEUROSCI.0616-08.2008Search in Google Scholar PubMed PubMed Central

Hsia, A.Y., Masliah, E., McConlogue, L., Yu, G.Q., Tatsuno, G., Hu, K., Kholodenko, D., Malenka, R.C., Nicoll, R.A., and Mucke, L. (1999). Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc. Natl. Acad. Sci. USA. 96, 3228–3233.10.1073/pnas.96.6.3228Search in Google Scholar PubMed PubMed Central

Hudry, E., Dashkoff, J., Roe, A.D., Takeda, S., Koffie, R.M., Hashimoto, T., Scheel, M., Spires-Jones, T., Arbel-Ornath, M., Betensky, R., et al. (2013). Gene transfer of human apoe isoforms results in differential modulation of amyloid deposition and neurotoxicity in mouse brain. Sci. Transl. Med. 5, 212ra161.10.1126/scitranslmed.3007000Search in Google Scholar PubMed PubMed Central

Inoue, S. (2008). In situ Abeta pores in AD brain are cylindrical assembly of Abeta protofilaments. Amyloid. 15, 223–233.10.1080/13506120802524858Search in Google Scholar PubMed

Irizarry, M.C., Deng, A., Lleo, A., Berezovska, O., Von Arnim, C.A., Martin-Rehrmann, M., Manelli, A., LaDu, M.J., Hyman, B.T., and Rebeck, G.W. (2004). Apolipoprotein E modulates g-secretase cleavage of the amyloid precursor protein. J. Neurochem. 90, 1132–1143.10.1111/j.1471-4159.2004.02581.xSearch in Google Scholar PubMed

Jaeger, S. and Pietrzik, C.U. (2008). Functional role of lipoprotein receptors in Alzheimer’s disease. Curr. Alzheimer Res. 5, 15–25.10.2174/156720508783884675Search in Google Scholar PubMed

Jan, A., Gokce, O., Luthi-Carter, R., and Lashuel, H.A. (2008). The ratio of monomeric to aggregated forms of Aβ40 and Aβ42 is an important determinant of amyloid-β aggregation, fibrillogenesis, and toxicity J. Biol. Chem. 283, 28176–28189.10.1074/jbc.M803159200Search in Google Scholar PubMed PubMed Central

Jang, H., Zheng, J., and Nussinov, R. (2007). Models of β-amyloid ion channels in the membrane suggest that channel formation in the bilayer is a dynamic process. Biophys. J. 93, 1938–1949.10.1529/biophysj.107.110148Search in Google Scholar PubMed PubMed Central

Jang, H., Arce, F.T., Ramachandra, S., Capone, R., Lal, R., and Nussinov, R. (2010). Barrel topology of Alzheimer’s β-amyloid ion channels. J. Mol. Biol. 404, 917–934.10.1016/j.jmb.2010.10.025Search in Google Scholar PubMed PubMed Central

Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W., and Glabe, C.G. (2003). Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300, 486–489.10.1126/science.1079469Search in Google Scholar PubMed

Kim, J., Basak, J.M., and Holtzman, D.M. (2009). The role of apolipoprotein E in Alzheimer’s disease. Neuron. 63, 287–303.10.1016/j.neuron.2009.06.026Search in Google Scholar PubMed PubMed Central

Kim, J., Jiang, H., Park, S., Eltorai, A.E., Stewart, F.R., Yoon, H., Basak, J.M., Finn, M.B., and Holtzman, D.M. (2011). Haploinsufficiency of human APOE reduces amyloid deposition in a mouse model of amyloid-β amyloidosis. J. Neurosci. 31, 18007–18012.10.1523/JNEUROSCI.3773-11.2011Search in Google Scholar PubMed PubMed Central

Koenigsknecht, J. and Landreth, G. (2004). Microglial phagocytosis of fibrillar β-amyloid through a β1 integrin-dependent mechanism. J. Neurosci. 24, 9838–9846.10.1523/JNEUROSCI.2557-04.2004Search in Google Scholar PubMed PubMed Central

Koenigsknecht-Talboo, J. and Landreth, G.E. (2005). Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J. Neurosci. 25, 8240–8249.10.1523/JNEUROSCI.1808-05.2005Search in Google Scholar PubMed PubMed Central

Lacor, P.N., Buniel, M.C., Furlow, P.W., Clemente, A.S., Velasco, P.T., Wood, M., Viola, K.L., and Klein, W.L. (2007). Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J. Neurosci. 27, 796–807.10.1523/JNEUROSCI.3501-06.2007Search in Google Scholar PubMed PubMed Central

Lal, R., Lin, H., and Quist, A.P. (2007). Amyloid β ion channel: 3D structure and relevance to amyloid channel paradigm. Biochim. Biophys. Acta 1768, 1966–1975.10.1016/j.bbamem.2007.04.021Search in Google Scholar PubMed PubMed Central

Lambert, M.P., Barlow, A.K., Chromy, B.A., Edwards, C., Freed, R., Liosatos, M., Morgan, T.E., Rozovsky, I., Trommer, B., Viola, K.L., et al. (1999). Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA 95, 6448–6453.10.1073/pnas.95.11.6448Search in Google Scholar PubMed PubMed Central

Lazzari, C., Kipanyula, M.J., Agostini, M., Pozzan, T., and Fasolato, C. (2015). Aβ42 oligomers selectively disrupt neuronal calcium release. Neurobiol. Aging. 36, 877–885.10.1016/j.neurobiolaging.2014.10.020Search in Google Scholar PubMed

Lee, S.H., Kim, K.R., Ryu, S.Y., Son, S., Hong, H.S., Mook-Jung, I., Lee, S.H., and Ho, W.K. (2012). Impaired short-term plasticity in mossy fiber synapses caused by mitochondrial dysfunction of dentate granule cells is the earliest synaptic deficit in a mouse model of Alzheimer’s disease. J. Neurosci. 32, 5953–5963.10.1523/JNEUROSCI.0465-12.2012Search in Google Scholar PubMed PubMed Central

Leuner, K., Schütt, T., Kurz, C., Eckert, S.H., Schiller, C., Occhipinti, A., Mai, S., Jendrach, M., Eckert, G.P., Kruse, S.E., et al. (2012). Mitochondrion-derived reactive oxygen species lead to enhanced amyloid β formation. Antioxid. Redox Signal. 16, 1421–1433.10.1089/ars.2011.4173Search in Google Scholar PubMed PubMed Central

Liraz, O., Boehm-Cagan, A., and Michaelson, D.M. (2013). ApoE4 induces Aβ42, τ, and neuronal pathology in the hippocampus of young targeted replacement apoE4 mice. Mol. Neurodegener. 8, 16.10.1186/1750-1326-8-16Search in Google Scholar PubMed PubMed Central

Lovell, M.A., Ehmann, W.D., Butler, S.M., and Markesbery, W.R. (1995). Elevated thiobarbituric acid-reactive substances and antioxidant enzyme activity in the brain in Alzheimer’s disease. Neurology 45, 1594–1601.10.1212/WNL.45.8.1594Search in Google Scholar PubMed

Lustbader, J.W., Cirilli, M., Lin, C., Xu, H.W., Takuma, K., Wang, N., Caspersen, C., Chen, X., Pollak, S., Chaney, M., et al. (2004). ABAD directly links Aβ to mitochondrial toxicity in Alzheimer’s disease. Science 304, 448–452.10.1126/science.1091230Search in Google Scholar PubMed

Maddock J., Cavadino A., Power C., and Hyppönen, E. (2015). 25-Hydroxyvitamin D, APOE ε4 genotype and cognitive function: findings from the 1958 British birth cohort. Eur. J. Clin. Nutr. 69, 505–508.10.1038/ejcn.2014.201Search in Google Scholar PubMed

Magdesian, M.H., Carvalho, M.M., Mendes, F.A., Saraiva, L.M., Juliano, M.A., Juliano, L., Garcia-Abreu, J., and Ferreira, S.T. (2008). Amyloid-β binds to the extracellular cysteine-rich domain of Frizzled and inhibits Wnt/β-catenin signaling. J. Biol. Chem. 283, 9359–9368.10.1074/jbc.M707108200Search in Google Scholar PubMed PubMed Central

Mahley, R.W. (2016a). Apolipoprotein E: from cardiovascular disease to neurodegenerative disorders. J. Mol. Med. (Berl.) 94, 739–746.10.1007/s00109-016-1427-ySearch in Google Scholar PubMed PubMed Central

Mahley, R.W. (2016b). Central nervous system lipoproteins: ApoE and regulation of cholesterol metabolism. Arterioscler. Thromb. Vasc. Biol. 36, 1305–1315.10.1161/ATVBAHA.116.307023Search in Google Scholar PubMed PubMed Central

Malenka, R.C. and Bear, M.F. (2004). LTP and LTD: an embarrassment of riches. Neuron 44, 5–21.10.1016/j.neuron.2004.09.012Search in Google Scholar PubMed

Manczak, M., Anekonda, T.S., Henson, E., Park, B.S., Quinn, J., and Reddy, P.H. (2006). Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum. Mol. Genet. 15, 1437–1449.10.1093/hmg/ddl066Search in Google Scholar PubMed

Manczak, M., Mao, P., Calkins, M.J., Cornea, A., Reddy, A.P., Murphy, M.P., Seto, H.H., Park, B., and Reddy, P.H. (2010). Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer’s disease neurons. J. Alzheimers Dis. 20, S609–S631.10.3233/JAD-2010-100564Search in Google Scholar PubMed PubMed Central

Mandrekar, S., Jiang, Q., Lee, C.Y., Koenigsknecht-Talboo, J., Holtzman, D.M., and Landreth, G.E. (2009). Microglia mediate the clearance of soluble Aβ through fluid phase macropinocytosis. J. Neurosci. 29, 4252–4262.10.1523/JNEUROSCI.5572-08.2009Search in Google Scholar PubMed PubMed Central

Mark, R.J., Pang, Z., Geddes, J.W., Uchida, K., and Mattson, M.P. (1997). Amyloid β-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J. Neurosci. 14, 1046–1054.10.1523/JNEUROSCI.17-03-01046.1997Search in Google Scholar

Markesbery, W.R. and Carney, J.M. (1999). Oxidative alterations in Alzheimer’s disease. Brain Pathol. 9, 133–146.10.1111/j.1750-3639.1999.tb00215.xSearch in Google Scholar PubMed PubMed Central

Mastrogiacoma, F., Lindsay, J.G., Bettendorff, L., Rice, J., and Kish, S.J. (1996). Brain protein and α ketoglutarate dehydrogenase activity in Alzheimer’s disease. Ann. Neurol. 39, 592–598.10.1002/ana.410390508Search in Google Scholar PubMed

Matsuzaki, K. (2007). Physicochemical interactions of amyloid β-peptide with lipid bilayers. Biochim. Biophys. Acta 1768, 1935–1942.10.1016/j.bbamem.2007.02.009Search in Google Scholar PubMed

Mattsson, N., Insel, P.S., Palmqvist, S., Stomrud, E., van Westen, D., Minthon, L., Zetterberg, H., Blennow, K., and Hansson, O. (2016). Increased amyloidogenic APP processing in APOE ε4-negative individuals with cerebral β-amyloidosis. Nat. Commun. 7, 10918.10.1038/ncomms10918Search in Google Scholar

Maurer, I., Zierz, S., and Moller, H.J. (2000). A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol. Aging 21, 455–462.10.1016/S0197-4580(00)00112-3Search in Google Scholar PubMed

Mawuenyega, K.G., Sigurdson, W., Ovod, V., Munsell, L., Kasten, T., Morris, J.C., Yarasheski, K.E., and Bateman, R.J. (2010). Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 330, 1774.10.1126/science.1197623Search in Google Scholar PubMed

McLean, C.A., Cherny, R.A., Fraser, F.W., Fuller, S.J., Smith, M.J., Beyreuther, K., Bush, A.I., and Masters, C.L. (1999). Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46, 860–866.10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-MSearch in Google Scholar PubMed

Meda, L., Cassatella, M.A., Szendrei, G.I., Otvos, L., Baron, P. Jr., Villalba, M., Ferrari, D., and Rossi, F. (1995). Activation of microglial cells by β-amyloid protein and interferon-γ. Nature 374, 647–650.10.1038/374647a0Search in Google Scholar PubMed

Mendis, L.H., Grey, A.C., Faull, R.L., and Curtis, M.A. (2016). Hippocampal lipid differences in Alzheimer’s disease: a human brain study using matrix-assisted laser desorption/ionization-imaging mass spectrometry. Brain Behav. 6, e00517.10.1002/brb3.517Search in Google Scholar PubMed

Mesulam, M.M. (2013). Cholinergic circuitry of the human nucleus basalis and its fate in Alzheimer’s disease. J. Comp. Neurol. 521, 4124–4144.10.1002/cne.23415Search in Google Scholar PubMed

Meyer-Luehmann, M., Spires-Jones, T.L., Prada, C., Garcia-Alloza, M., de Calignon, A., Rozkalne, A., Koenigsknecht-Talboo, J., Holtzman, D.M., Bacskai, B.J., and Hyman, B.T. (2008). Rapid appearance and local toxicity of amyloid-β plaques in a mouse model of Alzheimer’s disease. Nature 451, 720–724.10.1038/nature06616Search in Google Scholar

Moreira, P.I., Harris, P.L.R., Zhu, X., Santos, M.S., Oliveira, C.R., Smith, M.A., and Perry, G. (2007). Lipoic acid and N-acetyl cysteine decrease mitochondrial-related oxidative stress in Alzheimer disease patient fibroblasts. J. Alzheimer Dis. 12, 195–206.10.3233/JAD-2007-12210Search in Google Scholar

Mossmann, D., Vögtle, F.N., Taskin, A.A., Teixeira, P.F., Ring, J., Burkhart, J.M., Burger, N., Pinho, C.M., Tadic, J., Loreth, D., et al. (2014). Amyloid-β peptide induces mitochondrial dysfunction by inhibition of preprotein maturation. Cell Metab. 20, 662–669.10.1016/j.cmet.2014.07.024Search in Google Scholar PubMed

Murakami, Y., Ohsawa, I., Kasahara, T., and Ohta, S. (2009). Cytoprotective role of mitochondrial amyloid β peptide-binding alcohol dehydrogenase against a cytotoxic aldehyde. Neurobiol. Aging 30, 325–329.10.1016/j.neurobiolaging.2007.07.002Search in Google Scholar PubMed

Nakamura, T. and Lipton, S.A. (2011). Redox modulation by S-nitrosylation contributes to protein misfolding, mitochondrial dynamics, and neuronal synaptic damage in neurodegenerative diseases. Cell Death Differ. 18, 1478–1486.10.1038/cdd.2011.65Search in Google Scholar PubMed PubMed Central

Näslund, J., Haroutunian, V., Mohs, R., Davis, K.L., Davies, P., Greengard, P., and Buxbaum, J.D. (2000). Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. J. Am. Med. Assoc. 283, 1571–1577.10.1001/jama.283.12.1571Search in Google Scholar PubMed

Nitsch, R.M., Blusztajn, J.K., Pittas, A.G., Slack, B.E., Growdon, J.H., and Wurtman, R.J. (1992). Evidence for a membrane defect in Alzheimer disease brain. Proc. Natl. Acad. Sci. USA. 89, 1671–1675.10.1073/pnas.89.5.1671Search in Google Scholar PubMed PubMed Central

Njie, E.G., Boelen, E., Stassen, F.R., Steinbusch, H.W., Borchelt, D.R., and Streit, W.J. (2012). Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol. Aging. 33, e1–e12.10.1016/j.neurobiolaging.2010.05.008Search in Google Scholar PubMed PubMed Central

Origlia, N., Capsoni, S., Cattaneo, A., Fang, F., Arancio, O., Yan, S.D., and Domenici, L. (2009). Aβ-dependent inhibition of LTP in different intracortical circuits of the visual cortex: the role of RAGE. J. Alzheimers Dis. 17, 59–68.10.3233/JAD-2009-1045Search in Google Scholar PubMed PubMed Central

Origlia, N., Righi, M., Capsoni, S., Cattaneo, A., Fang, F., Stern, D.M., Chen, J.X., Schmidt, A.M., Arancio, O., Yan, S.D., et al. (2008). Receptor for advanced glycation end product-dependent activation of p38 mitogen-activated protein kinase contributes to amyloid-β-mediated cortical synaptic dysfunction. J. Neurosci. 28, 3521–3530.10.1523/JNEUROSCI.0204-08.2008Search in Google Scholar PubMed PubMed Central

Oz, M., Lorke, D.E., Yang, K.H., and Petroianu, G. (2013). On the interaction of β-amyloid peptides and α7-nicotinic acetylcholine receptors in Alzheimer’s disease. Curr. Alzheimer Res. 10, 618–630.10.2174/15672050113109990132Search in Google Scholar PubMed

Park, J., Jang, M., and Chang, S. (2013). Deleterious effects of soluble amyloid-β oligomers on multiple steps of synaptic vesicle trafficking. Neurobiol. Dis. 55, 129–139.10.1016/j.nbd.2013.03.004Search in Google Scholar PubMed

Parker, W.D. Jr., Filley, C.M., and Parks, J.K. (1990). Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology 40, 1302–1303.10.1212/WNL.40.8.1302Search in Google Scholar PubMed

Parodi, J., Sepulveda, F.J., Roa, J., Opazo, C., Inestrosa, N.C., and Aguayo, L.G. (2010). Amyloid causes depletion of synaptic vesicles leading to neurotransmission failure. J. Biol. Chem. 285, 2506–2514.10.1074/jbc.M109.030023Search in Google Scholar PubMed PubMed Central

Practicò, D., Uryu, K., Leight, S., Trojanoswki, J.Q., and Lee, V.M. (2001). Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J. Neurosci. 21, 4183–4187.10.1523/JNEUROSCI.21-12-04183.2001Search in Google Scholar

Renner, M., Lacor, P.N., Velasco, P.T., Xu, J., Contractor, A., Klein, W.L., and Triller, A. (2010). Deleterious effects of amyloid-β oligomers acting as an extracellular scaffold for mGluR5. Neuron 66, 739–754.10.1016/j.neuron.2010.04.029Search in Google Scholar PubMed PubMed Central

Rhein, V., Baysang, G., Rao, S., Meier, F., Bonert, A., Müller-Spahn, F., and Eckert, A. (2009). Amyloid-β leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells. Cell Mol. Neurobiol. 29, 1063–1071.10.1007/s10571-009-9398-ySearch in Google Scholar PubMed

Roberson, E.D., Scearce-Levie, K., Palop, J.J., Yan, F., Cheng, I.H., Wu, T., Gerstein, H., Yu, G.Q., and Mucke, L. (2007). Reducing endogenous τ ameliorates amyloid β-induced deficits in an Alzheimer’s disease mouse model. Science 316, 750–754.10.1126/science.1141736Search in Google Scholar PubMed

Rossner, S., Sastre, M., Bourne, K., and Lichtenthaler, S.F. (2006). Transcriptional and translational regulation of BACE1 expression – implications for Alzheimer’s disease. Prog. Neurobiol. 79, 95–111.10.1016/j.pneurobio.2006.06.001Search in Google Scholar PubMed

Sakono, M. and Zako, T. (2010). Amyloid oligomers: formation and toxicity of Aβ oligomers. FEBS J. 277, 1348–1358.10.1111/j.1742-4658.2010.07568.xSearch in Google Scholar PubMed

Scheff, S.W., Price, D.A., Schmitt, F.A., and Mufson, E.J. (2006). Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol. Aging 27, 1372–1384.10.1016/j.neurobiolaging.2005.09.012Search in Google Scholar PubMed

Schmechel, D.E., Saunders, A.M., Strittmatter, W.J., Crain, B.J., Hulette, C.M., Joo, S.H., Pericak-Vance, M.A., Goldgaber, D., and Roses, A.D. (1993). Increased amyloid β-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc. Natl. Acad. Sci. USA 90, 9649–9653.10.1073/pnas.90.20.9649Search in Google Scholar PubMed PubMed Central

Sepúlveda, F.J., Fierro, H., Fernandez, E., Castillo, C., Peoples, R.W., Opazo, C., and Aguayo, L.G. (2014). Nature of the neurotoxic membrane actions of amyloid-β on hippocampal neurons in Alzheimer’s disease. Neurobiol. Aging 35, 472–481.10.1016/j.neurobiolaging.2013.08.035Search in Google Scholar PubMed

Serrano-Pozo, A., Qian, J., Monsell, S.E., Betensky, R.A., and Hyman, B.T. (2015). APOEε2 is associated with milder clinical and pathological Alzheimer disease. Ann. Neurol. 77, 917–929.10.1002/ana.24369Search in Google Scholar PubMed PubMed Central

Shah, P., Lal, N., Leung, E., Traul, D.E., Gonzalo-Ruiz, A., and Geula, C. (2010). Neuronal and axonal loss are selectively linked to fibrillar amyloid-β within plaques of the aged primate cerebral cortex. Am. J. Pathol. 177, 325–333.10.2353/ajpath.2010.090937Search in Google Scholar PubMed PubMed Central

Shahnawaz, M. and Soto, C. (2012). Microcin amyloid fibrils A are reservoir of toxic oligomeric species. J. Biol. Chem. 287, 11665–11676.10.1074/jbc.M111.282533Search in Google Scholar PubMed PubMed Central

Sheehan, J.P., Swerdlow, R.H., Miller, S.W., Davis, R.E., Parks, J.K., Parker, W.D., and Tuttle, J.B. (1997). Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer’s disease. J. Neurosci. 17, 4612–4622.10.1523/JNEUROSCI.17-12-04612.1997Search in Google Scholar PubMed

Sheikh, K., Giordani, C., McManus, J.J., Hovgaard, M.B., and Jarvis, S.P. (2012). Differing modes of interaction between monomeric Aβ (1-40) peptides and model lipid membranes: an AFM study. Chem. Phys. Lipids 165, 142–150.10.1016/j.chemphyslip.2011.11.011Search in Google Scholar PubMed

Shibata, M., Yamada, S., Kumar, S.R., Calero, M., Bading, J., Frangione, B., Holtzman, D.M., Miller, C.A., Strickland, D.K., Ghiso, J., et al. (2000). Clearance of Alzheimer’s amyloid-β(1–40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Invest. 106, 1489–1499.10.1172/JCI10498Search in Google Scholar PubMed PubMed Central

Shinoda, K., Sohma, Y., and Kanai, M. (2015). Synthesis of chemically-tethered amyloid-β segment trimer possessing amyloidogenic properties. Bioorg. Med. Chem. Lett. 25, 2976–2979.10.1016/j.bmcl.2015.05.029Search in Google Scholar PubMed

Snyder, E.M., Nong, Y., Almeida, C.G., Paul, S., Moran, T., Choi, E.Y., Nairn, A.C., Salter, M.W., Lombroso, P.J., Gouras, G.K., et al. (2005). Regulation of NMDA receptor trafficking by amyloid-β. Nat. Neurosci. 8, 1051–1058.10.1038/nn1503Search in Google Scholar PubMed

Sondag, C.M., Dhawan, G., and Combs, C.K. (2009). β Amyloid oligomers and fibrils stimulate differential activation of primary microglia. J. Neuroinflamm. 6, 1.10.1186/1742-2094-6-1Search in Google Scholar PubMed PubMed Central

Spuch, C., Ortolano, S., and Navarro, C. (2012). New insights in the amyloid-β interaction with mitochondria. J. Aging Res. 2012, 324968.10.1155/2012/324968Search in Google Scholar PubMed PubMed Central

Stefani, M. (2010). Biochemical and biophysical features of both oligomer/fibril and cell membrane in amyloid cytotoxicity. FEBS J. 277, 4602–4613.10.1111/j.1742-4658.2010.07889.xSearch in Google Scholar PubMed

Stéphan, A., Laroche, S., and Davis, S. (2001). Generation of aggregated β-amyloid in the rat hippocampus impairs synaptic transmission and plasticity and causes memory deficits. J. Neurosci. 21, 5703–5714.10.1523/JNEUROSCI.21-15-05703.2001Search in Google Scholar PubMed

Strittmatter, W.J., Saunders, A.M., Schmechel, D., Pericak Vance, M., Enghild, J., Salvesen, G.S., and Roses, A.D. (1993). Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA. 90, 1977–1981.10.1073/pnas.90.5.1977Search in Google Scholar PubMed PubMed Central

Swomley, A.M. and Butterfield, D.A. (2015). Oxidative stress in Alzheimer disease and mild cognitive impairment: evidence from human data provided by redox proteomics. Arch. Toxicol. 89, 1669–1680.10.1007/s00204-015-1556-zSearch in Google Scholar PubMed

Terry, R.D., Masliah, E., Salmon, D.P., Butters, N., DeTeresa, R., Hill, R., Hansen, L.A., and Katzman, R. (1991). Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 30, 572–580.10.1002/ana.410300410Search in Google Scholar PubMed

Tillement, L., Lecanu, L., Yao, W., Greeson, J., and Papadopoulos, V. (2006). The spirostenol (22R, 25R)-20a-spirost-5-en-3b-yl hexanoate blocks mitochondrial uptake of Aβ in neuronal cells and prevents Aβ-induced impairment of mitochondrial function. Steroids 71, 725–735.10.1016/j.steroids.2006.05.003Search in Google Scholar PubMed

Tillement, L., Lecanu, L., and Papadopoulos, V. (2011). Alzheimer’s disease: effects of β-amyloid on mitochondria. Mitochondrion 11, 13–21.10.1016/j.mito.2010.08.009Search in Google Scholar PubMed

Tipping, K.W., Karamanos, T.K., Jakhria, T., Iadanza, M.G., Goodchild, S.C., Tuma, R., Ranson, N.A., Hewitt, E.W., and Radford, S.E. (2015). pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers. Proc. Natl. Acad. Sci. USA. 112, 5691–5696.10.1073/pnas.1423174112Search in Google Scholar PubMed PubMed Central

Tjernberg, L.O., Callaway, D.J., Tjernberg, A., Hahne, S., Lilliehook, C., Terenius, L., Thyberg, J., and Nordstedt, C. (1999). A molecular model of Alzheimer amyloid β-peptide fibril formation. J. Biol. Chem. 274, 12619–12625.10.1074/jbc.274.18.12619Search in Google Scholar PubMed

Tokuda, T., Calero, M., Matsubara, E., Vidal, R., Kumar, A., Permanne, B., Zlokovic, B., Smith, J.D., Ladu, M.J., Rostagno, A., et al. (2000). Lipidation of apolipoprotein E influences its isoform-specific interaction with Alzheimer’s amyloid β peptides. Biochem. J. 348, 359–365.10.1042/bj3480359Search in Google Scholar PubMed

Townsend, M., Shankar, G.M., Mehta, T., Walsh, D.M., and Selkoe, D.J. (2006). Effects of secreted oligomers of amyloid-β protein on hippocampal synaptic plasticity: a potent role for trimers. J. Physiol. (Lond.) 572, 477–492.10.1113/jphysiol.2005.103754Search in Google Scholar PubMed PubMed Central

Vasalani, K.R., Sun, Q., Hu, G., Li, J., Du, F., Guo, Y., Carlson, E.A., Gan, X., and Yan S. (2014). Identification of human ABAD inhibitors for rescuing Aβ-mediated mitochondrial dysfunction. Curr. Alzheimers Res. 11, 128–136.10.2174/1567205011666140130150108Search in Google Scholar PubMed PubMed Central

Verghese, P.B., Castellano, J.M., Garai, K., Wang, Y., Jiang, H., Shah, A., Bu, G., Frieden, C., and Holtzman, D.M. (2013). ApoE influences amyloid-β (Aβ) clearance despite minimal apoE/Aβ association in physiological conditions. Proc. Natl. Acad. Sci. USA. 110, E1807–E1816.10.1073/pnas.1220484110Search in Google Scholar PubMed PubMed Central

Vincent, B. and Smith, J.D. (2001). Astrocytes down-regulate neuronal β-amyloid precursor protein expression and modify its processing in an apolipoprotein E isoform-specific manner. Eur. J. Neurosci. 14, 256–266.10.1046/j.0953-816x.2001.01643.xSearch in Google Scholar PubMed

Walsh, D.M. and Selkoe, D.J. (2004). Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44, 181–193.10.1016/j.neuron.2004.09.010Search in Google Scholar PubMed

Walsh, D.M. and Selkoe, D.J. (2007). Aβ oligomers – a decade of discovery. Neurochemistry 101, 1172–1184.10.1111/j.1471-4159.2006.04426.xSearch in Google Scholar PubMed

Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S., Rowan, M.J., and Selkoe, D.J. (2002). Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416, 535–539.10.1038/416535aSearch in Google Scholar PubMed

Walsh, D.M., Klyubin, I., Shankar, G.M., Townsend, M., Fadeeva, J.V., Betts, V., Podlisny, M.B., Cleary, J.P., Ashe, K.H., Rowan, M.J., et al. (2005). The role of cell-derived oligomers of Aβ in Alzheimer’s disease and avenues for therapeutic intervention. Biochem. Soc. Trans. 33, 1087–1090.10.1042/BST0331087Search in Google Scholar PubMed

Wang, X., Su, B., Siedlak, S.L., Moreira, P.I., Fujioka, H., Wang, Y., Casadesus, G., and Zhu, X. (2008). Amyloid-β overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc. Natl. Acad. Sci. USA. 105, 19318–19323.10.1073/pnas.0804871105Search in Google Scholar PubMed PubMed Central

Wang, X., Su, B., Lee, H.G., Li, X., Perry, G., Smith, M.A., and Zhu, X. (2009). Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J. Neurosci. 29, 9090–9103.10.1523/JNEUROSCI.1357-09.2009Search in Google Scholar PubMed PubMed Central

Williams, S.E., Ashcom, J.D., Argraves, W.S., and Strickland, D.K. (1992). A novel mechanism for controlling the activity of α2-macroglobulin receptor/low density lipoprotein receptor-related protein. Multiple regulatory sites for 39-kDa receptor-associated protein. J. Biol. Chem. 267, 9035–9040.10.1016/S0021-9258(19)50384-2Search in Google Scholar

Xie, H., Guan, J., Borrelli, L.A., Xu, J., Serrano-Pozo, A., and Bacskai, B.J. (2013). Mitochondrial alterations near amyloid plaques in an Alzheimer’s disease mouse model. J. Neurosci. 33, 17042–17051.10.1523/JNEUROSCI.1836-13.2013Search in Google Scholar PubMed PubMed Central

Xue, W.F., Hellewell, A.L., Gosal, W.S., Homans, S.W., Hewitt, E.W., and Radford, S.E. (2009). Fibril fragmentation enhances amyloid cytotoxicity. J. Biol. Chem. 284, 34272–34282.10.1074/jbc.M109.049809Search in Google Scholar PubMed PubMed Central

Yan, S.D., Fu, J., Soto, C., Chen, X., Zhu, H., Al-Mohanna, F., Collinson, K., Zhu, A., Stern, E., Saido, T., et al. (1997). An intracellular protein that binds amyloid-β peptide and mediates neurotoxicity in Alzheimer’s disease. Nature 389, 689–695.10.1038/39522Search in Google Scholar PubMed

Yang, T., Li, S., Xu, H., Walsh, D.M., and Sekoe, D.J. (2017). Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J. Neurosci. 37, 152–163.10.1523/JNEUROSCI.1698-16.2016Search in Google Scholar PubMed PubMed Central

Yao, J., Du, H., Yan, S., Fang, F., Wang, C., Lue, L.F., Guo, L., Chen, D., Stern, D.M., Gunn Moore, F.J., et al. (2011). Inhibition of amyloid-β (Aβ) peptide-binding alcohol dehydrogenase-Aβ interaction reduces Aβ accumulation and improves mitochondrial function in a mouse model of Alzheimer’s disease. J. Neurosci. 31, 2313–2320.10.1523/JNEUROSCI.4717-10.2011Search in Google Scholar PubMed PubMed Central

Yoshiike, Y., Akagi, T., and Takashima, A. (2007). Surface structure of amyloid-β fibrils contributes to cytotoxicity. Biochemistry 46, 9805–9812.10.1021/bi700455cSearch in Google Scholar PubMed

Youle, R.J. and van der Bliek, A.M. (2012). Mitochondrial fission, fusion, and stress. Science 337, 1062–1065.10.1126/science.1219855Search in Google Scholar PubMed PubMed Central

Youmans, K.L., Tai, L.M., Nwabuisi-Heath, E., Jungbauer, L., Kanekiyo, T., Gan, M., Kim, J., Eimer, W.A., Estus, S., Rebeck, G.W., et al. (2012). APOE4-specific changes in Aβ accumulation in a new transgenic mouse model of Alzheimer disease. J. Biol. Chem. 287, 41774–41786.10.1074/jbc.M112.407957Search in Google Scholar PubMed PubMed Central

Received: 2017-08-08
Accepted: 2017-12-17
Published Online: 2018-02-15
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2017-0063/html
Scroll to top button