1932

Abstract

Cerebellar neuroscience has undergone a paradigm shift. The theories of the universal cerebellar transform and dysmetria of thought and the principles of organization of cerebral cortical connections, together with neuroanatomical, brain imaging, and clinical observations, have recontextualized the cerebellum as a critical node in the distributed neural circuits subserving behavior. The framework for cerebellar cognition stems from the identification of three cognitive representations in the posterior lobe, which are interconnected with cerebral association areas and distinct from the primary and secondary cerebellar sensorimotor representations linked with the spinal cord and cerebral motor areas. Lesions of the anterior lobe primary sensorimotor representations produce dysmetria of movement, the cerebellar motor syndrome. Lesions of the posterior lobe cognitive-emotional cerebellum produce dysmetria of thought and emotion, the cerebellar cognitive affective/Schmahmann syndrome. The notion that the cerebellum modulates thought and emotion in the same way that it modulates motor control advances the understanding of the mechanisms of cognition and opens new therapeutic opportunities in behavioral neurology and neuropsychiatry.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-070918-050258
2019-07-08
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/neuro/42/1/annurev-neuro-070918-050258.html?itemId=/content/journals/10.1146/annurev-neuro-070918-050258&mimeType=html&fmt=ahah

Literature Cited

  1. Akshoomoff NA, Courchesne E, Townsend J 1997. Attention coordination and anticipatory control. Int. Rev. Neurobiol. 41:575–98
    [Google Scholar]
  2. Albus JS. 1971. A theory of cerebellar function. Math. Biosci. 10:25–61
    [Google Scholar]
  3. Arnold Anteraper S, Guell X, D'Mello A, Joshi N, Whitfield-Gabrieli S, Joshi G 2018. Disrupted cerebrocerebellar intrinsic functional connectivity in young adults with high-functioning autism spectrum disorder: a data-driven, whole-brain, high-temporal resolution functional magnetic resonance imaging study. Brain Connect In press. http://doi.org/10.1089/brain.2018.0581
    [Crossref] [Google Scholar]
  4. Azizi SA, Woodward DJ. 1987. Inferior olivary nuclear complex of the rat: morphology and comments on the principles of organization within the olivocerebellar system. J. Comp. Neurol. 263:4467–84
    [Google Scholar]
  5. Badura A, De Zeeuw CE 2017. Cerebellar granule cells: dense, rich and evolving representations. Curr. Biol. 27:11R415–18
    [Google Scholar]
  6. Barmack NH, Yakhnitsa V. 2013. Vestibulocerebellar connections. Handbook of the Cerebellum and Cerebellar Disorders M Manto, JD Schmahmann, F Rossi, DL Gruol, N Koibuchi 357–75 Dordrecht: Springer
    [Google Scholar]
  7. Bauman M, Kemper TL. 1985. Histoanatomic observations of the brain in early infantile autism. Neurology 35:866–74
    [Google Scholar]
  8. Baumann O, Borra RJ, Bower JM, Cullen KE, Habas C et al. 2015. Consensus paper: the role of the cerebellum in perceptual processes. Cerebellum 14:2197–220
    [Google Scholar]
  9. Bechterew W. 1885. Zur Anatomie der Schenkel des Kleinhirns, insbesondere der Brückenarme. Neurol. Centralblatt 4:121–25
    [Google Scholar]
  10. Bolk L. 1906. Das Cerebellum der Säugetiere. Eine vergleichend anatomische Untersuchung Haarlem: Erven F. Bohn
  11. Bower JM. 1997. Control of sensory data acquisition. Int. Rev. Neurobiol. 41:489–513
    [Google Scholar]
  12. Brady RO Jr., Gonsalvez I, Lee I, Öngür D, Seidman LJ et al. 2019. Cerebellar-prefrontal network connectivity and negative symptoms in schizophrenia. Am. J. Psychiatry. In press. https://doi.org/10.1176/appi.ajp.2018.18040429
    [Crossref] [Google Scholar]
  13. Braitenberg V. 1967. Is the cerebellar cortex a biological clock in the millisecond range. ? Prog. Brain Res. 25:334–46
    [Google Scholar]
  14. Braitenberg V, Heck D, Sultan F 1997. The detection and generation of sequences as a key to cerebellar function: experiments and theory. Behav. Brain Sci. 20:2229–45
    [Google Scholar]
  15. Brissenden JA, Tobyne SM, Osher DE, Levin EJ, Halko MA, Somers DC 2018. Topographic cortico-cerebellar networks revealed by visual attention and working memory. Curr. Biol. 28:3364–72.e5
    [Google Scholar]
  16. Brodal A. 1972. Vestibulocerebellar input in the cat: anatomy. Prog. Brain Res. 37:315–27
    [Google Scholar]
  17. Brodal A. 1981. Neurological Anatomy in Relation to Clinical Medicine New York: Oxford. , 2nd ed..
  18. Brodal A, Hoivik B. 1964. Site and termination of primary vestibulocerebellar fibres in the cat. An experimental study with silver impregnation methods. Arch. Ital. Biol. 102:1–21
    [Google Scholar]
  19. Brodal P. 1978. The corticopontine projection in the rhesus monkey: origin and principles of organization. Brain 101:251–83
    [Google Scholar]
  20. Brodal P. 1979. The pontocerebellar projection in the rhesus monkey: an experimental study with retrograde axonal transport of horseradish peroxidase. Neuroscience 4:193–208
    [Google Scholar]
  21. Brossard-Racine M, du Plessis AJ, Limperopoulos C 2015. Developmental cerebellar cognitive affective syndrome in ex-preterm survivors following cerebellar injury. Cerebellum 14:151–64
    [Google Scholar]
  22. Brunet E, Sarfati Y, Hardy-Bayle MC, Decety J 2000. A PET investigation of the attribution of intentions with a nonverbal task. Neuroimage 11:157–66
    [Google Scholar]
  23. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BTT 2011. The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106:52322–45
    [Google Scholar]
  24. Bushara KO, Wheat JM, Khan A, Mock BJ, Turski PA et al. 2001. Multiple tactile maps in the human cerebellum. Neuroreport 12:112483–86
    [Google Scholar]
  25. Calarge C, Andreasen NC, O'Leary DS 2003. Visualizing how one brain understands another: a PET study of theory of mind. Am. J. Psychiatry. 160:1954–64
    [Google Scholar]
  26. Carpenter MB, Stein BM, Peter P 1972. Primary vestibulocerebellar fibers in the monkey: distribution of fibers arising from distinctive cell groups of the vestibular ganglia. Am. J. Anat. 135:2221–49
    [Google Scholar]
  27. Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K 2019. Cerebellar modulation of the reward circuitry and social behavior. Science 363:6424eaav0581
    [Google Scholar]
  28. Chambers WW, Sprague JM. 1955. Functional localization in the cerebellum. I. Organization in longitudinal cortico-nuclear zones and their contribution to the control of posture, both extrapyramidal and pyramidal. J. Comp. Neurol. 103:105–29
    [Google Scholar]
  29. Chheda MG, Sherman JC, Schmahmann JD 2002. Neurologic, psychiatric and cognitive manifestations in cerebellar agenesis. Neurology 58:Suppl. 3356
    [Google Scholar]
  30. Clarke E, O'Malley CD. 1996. The Human Brain and Spinal Cord: A Historical Study Illustrated by Writings from Antiquity to the Twentieth Century San Francisco: Norman Publ.
  31. Cooper IS, Amin L, Gilman S, Waltz JM 1974. The effect of chronic stimulation of cerebellar cortex on epilepsy in man. The Cerebellum, Epilepsy and Behavior IS Cooper, M Riklan, RS Snider 119–72 New York: Plenum Press
    [Google Scholar]
  32. Demirtas-Tatlidede A, Freitas C, Cromer J, Safar L, Ongur D et al. 2010. Safety and proof of principle study of cerebellar vermal theta burst stimulation in refractory schizophrenia. Schizophr. Res. 124:91–100
    [Google Scholar]
  33. D'Mello AM, Stoodley CJ. 2015. Cerebro-cerebellar circuits in autism spectrum disorder. Front. Neurosci. 9:408
    [Google Scholar]
  34. D'Mello AM, Turkeltaub PE, Stoodley CJ 2017. Cerebellar tDCS modulates neural circuits during semantic prediction: a combined tDCS-fMRI study. J. Neurosci. 37:61604–13
    [Google Scholar]
  35. Dow RS. 1939. Cerebellar action potentials in response to stimulation of various afferent connections. J. Neurophysiol. 2:543–55
    [Google Scholar]
  36. Dow RS. 1974. Some novel concepts of cerebellar physiology. Mt. Sinai J. Med. 41:103–19
    [Google Scholar]
  37. Doyon J, Laforce R Jr, Bouchard G, Gaudreau D, Roy J et al. 1998. Role of the striatum, cerebellum and frontal lobes in the automatization of a repeated visuomotor sequence of movements. Neuropsychologia 36:7625–41
    [Google Scholar]
  38. Dum RP, Strick PL. 2003. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J. Neurophysiol. 89:634–39
    [Google Scholar]
  39. Eccles JC, Ito M, Szentágothai J 1967. The Cerebellum as a Neuronal Machine New York: Springer-Verlag
  40. Farley SJ, Radley JJ, Freeman JH 2016. Amygdala modulation of cerebellar learning. J. Neurosci. 36:72190–201
    [Google Scholar]
  41. Farzan F, Pascual-Leone A, Schmahmann JD, Halko M 2016. Enhancing the temporal complexity of distributed brain networks with patterned cerebellar stimulation. Sci. Rep. 6:23599
    [Google Scholar]
  42. Fatemi SH, Aldinger KA, Ashwood P, Bauman ML, Blaha CD et al. 2012. Consensus paper: pathological role of the cerebellum in autism. Cerebellum 11:3777–807
    [Google Scholar]
  43. Fiez JA, Petersen SE, Cheney MK, Raichle ME 1992. Impaired non-motor learning and error detection associated with cerebellar damage. Brain 115:155–78
    [Google Scholar]
  44. Flourens P. 1824. Recherches Expérimentales sur les Propriétés et les Fonctions du Système Nerveux, dans les Animaux Vertébrés Paris: Crevot
  45. Garg S, Sinha VK, Tikka SK, Mishra P, Goyal N 2016. The efficacy of cerebellar vermal deep high frequency (theta range) repetitive transcranial magnetic stimulation (rTMS) in schizophrenia: a randomized rater blind-sham controlled study. Psychiatry Res 243:413–20
    [Google Scholar]
  46. Glickstein M. 1997. Mossy-fibre sensory input to the cerebellum. Prog. Brain Res. 114:251–59
    [Google Scholar]
  47. Grant G. 1962a. Spinal course and somatotopically localized termination of the spinocerebellar tracts. An experimental study in the cat. Acta Physiol. Scand. Suppl. 56:1931–61
    [Google Scholar]
  48. Grant G. 1962b. Projection of the external cuneate nucleus onto the cerebellum in the cat: an experimental study using silver methods. Exp. Neurol. 5:179–95
    [Google Scholar]
  49. Gudrunardottir T, Morgan AT, Lux AL, Walker DA, Walsh KS et al. 2016. Consensus paper on post-operative pediatric cerebellar mutism syndrome: the Iceland Delphi results. Childs Nerv. Syst. 32:71195–203
    [Google Scholar]
  50. Guell X, Gabrieli J DE, Schmahmann JD 2018a. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. Neuroimage 172:437–49
    [Google Scholar]
  51. Guell X, Goncalves M, Kaczmarzyk JR, Gabrieli JDE, Schmahmann JD, Ghosh SS 2019. LittleBrain: A gradient-based tool for the topographical interpretation of cerebellar neuroimaging findings. PLOS ONE 14:1e0210028
    [Google Scholar]
  52. Guell X, Hoche F, Schmahmann JD 2015. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum 14:50–58
    [Google Scholar]
  53. Guell X, Schmahmann JD, Gabrieli J 2018b. Functional specialization is independent of microstructural variation in cerebellum but not in cerebral cortex. bioRxiv 424176. https://doi.org/10.1101/424176
    [Crossref]
  54. Guell X, Schmahmann JD, Gabrieli J, Ghosh S 2018c. Functional gradients of the cerebellum. eLife 7:e36652
    [Google Scholar]
  55. Guillery RW. 1995. Anatomical evidence concerning the role of the thalamus in corticocortical communication: a brief review. J. Anat. 187:3583–92
    [Google Scholar]
  56. Guo CC, Tan R, Hodges JR, Hu X, Sami S, Hornberger M 2016. Network-selective vulnerability of the human cerebellum to Alzheimer's disease and frontotemporal dementia. Brain 139:51527–38
    [Google Scholar]
  57. Habas C, Kamdar N, Nguyen D, Prater K, Beckmann CF et al. 2009. Distinct cerebellar contributions to intrinsic connectivity networks. J. Neurosci. 29:268586–94
    [Google Scholar]
  58. Haines DE. 1989. HRP study of cerebellar corticonuclear-nucleocortical topography of the dorsal culminate lobule–lobule V–in a prosimian primate (Galago): with comments on nucleocortical cell types. J. Comp. Neurol. 282:274–92
    [Google Scholar]
  59. Haines DE, Dietrichs E, Mihailoff GA, McDonald EF 1997. The cerebellar-hypothalamic axis: basic circuits and clinical observations. Int. Rev. Neurobiol. 41:83–107
    [Google Scholar]
  60. Halko M, Farzan F, Eldaief M, Schmahmann JD, Pascual-Leone A 2014. Intermittent theta-burst stimulation of the lateral cerebellum increases functional connectivity of the default network. J. Neurosci. 34:3612049–56
    [Google Scholar]
  61. Hawkes R. 2014. Purkinje cell stripes and long-term depression at the parallel fiber-Purkinje cell synapse. Front. Syst. Neurosci. 28:841
    [Google Scholar]
  62. Hawkes R, Leclerc N. 1989. Purkinje cell axon collateral distributions reflect the chemical compartmentation of the rat cerebellar cortex. Brain Res 476:2279–90
    [Google Scholar]
  63. Heath RG. 1977. Modulation of emotion with a brain pacemaker. Treatment for intractable psychiatric illness. J. Nerv. Ment. Dis. 165:300–17
    [Google Scholar]
  64. Hernandez-Castillo CR, Diaz R, Campos-Romo A, Fernandez-Ruiz J 2017. Neural correlates of ataxia severity in spinocerebellar ataxia type 3/Machado-Joseph disease. Cerebellum Ataxias 4:7
    [Google Scholar]
  65. Hernandez-Castillo CR, King M, Diedrichsen J, Fernandez-Ruiz J 2018. Unique degeneration signatures in the cerebellar cortex for spinocerebellar ataxias 2, 3, and 7. Neuroimage Clin 20:931–38
    [Google Scholar]
  66. Herrero L, Yu M, Walker F, Armstrong DM, Apps R 2006. Olivo-cortico-nuclear localizations within crus I of the cerebellum. J. Comp. Neurol. 497:2287–308
    [Google Scholar]
  67. Hoche F, Guell X, Sherman JC, Vangel MG, Schmahmann JD 2016. Cerebellar contribution to social cognition. Cerebellum 15:732–43
    [Google Scholar]
  68. Hoche F, Guell X, Vangel M, Sherman JC, Schmahmann JD 2018. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain 141:248–70
    [Google Scholar]
  69. Holmes G. 1917. The symptoms of acute cerebellar injuries due to gunshot injuries. Brain 4:461–535
    [Google Scholar]
  70. Holmes G. 1939. The cerebellum of man. Brain 62:1–30
    [Google Scholar]
  71. Hoshi E, Tremblay L, Féger J, Carras PL, Strick PL 2005. The cerebellum communicates with the basal ganglia. Nat. Neurosci. 8:111491–93
    [Google Scholar]
  72. Ito M. 1984. The Cerebellum and Neural Control New York: Raven
  73. Ito M. 2006. Cerebellar circuitry as a neuronal machine. Prog. Neurobiol. 78:3–5272–303
    [Google Scholar]
  74. Ito M. 2008. Control of mental activities by internal models in the cerebellum. Nat. Rev. Neurosci. 9:4304–13
    [Google Scholar]
  75. Ivry RB, Keele SW. 1989. Timing functions of the cerebellum. J. Cogn. Neurosci. 1:136–52
    [Google Scholar]
  76. Jansen J, Brodal A. 1940. Experimental studies on the intrinsic fibers of the cerebellum. II. The cortico-nuclear projection. J. Comp. Neurol. 73:267–321
    [Google Scholar]
  77. Kelly RM, Strick PL. 2003. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J. Neurosci. 23:238432–44
    [Google Scholar]
  78. Keren-Happuch E, Chen SHA, Ho MHR, Desmond JE 2014. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies. Hum. Brain Mapp. 35:2593–615
    [Google Scholar]
  79. King M, Hernandez-Castillo CR, Poldrack R, Ivry R, Diedrichsen J 2018. A multi-domain task battery reveals functional boundaries in the human cerebellum. bioRxiv 423509. https://doi.org/10.1101/423509
    [Crossref]
  80. Kipping JA, Grodd W, Kumar V, Taubert M, Villringer A, Margulies DS 2013. Overlapping and parallel cerebello-cerebral networks contributing to sensorimotor control: an intrinsic functional connectivity study. Neuroimage 83:837–48
    [Google Scholar]
  81. Koziol LF, Budding D, Andreasen N, D'Arrigo S, Bulgheroni S et al. 2014. Consensus paper: the cerebellum's role in movement and cognition. Cerebellum 13:151–77
    [Google Scholar]
  82. Krienen FM, Buckner RL. 2009. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb. Cortex 19:102485–97
    [Google Scholar]
  83. Lackey EP, Heck DH, Sillitoe RV 2018. Recent advances in understanding the mechanisms of cerebellar granule cell development and function and their contribution to behavior. F1000Res 7:1142
    [Google Scholar]
  84. Lashley KS. 1950. In search of the engram. Physiological Mechanisms in Animal Behaviour: Symposium IV of the Society for Experimental Biology454–82 Oxford, UK: Academic
    [Google Scholar]
  85. Leiner HC, Leiner AL, Dow RS 1986. Does the cerebellum contribute to mental skills?. Behav. Neurosci. 100:4443–54
    [Google Scholar]
  86. Lesage E, Morgan BE, Olson AC, Meyer AS, Miall RC 2012. Cerebellar rTMS disrupts predictive language processing. Curr. Biol. 22:18R794–95
    [Google Scholar]
  87. Levisohn L, Cronin-Golomb A, Schmahmann JD 2000. Neuropsychological consequences of cerebellar tumor resection in children: cerebellar cognitive affective syndrome in a pediatric population. Brain 123:1041–50
    [Google Scholar]
  88. Limperopoulos C, Bassan H, Gauvreau K, Robertson RL Jr, Sullivan NR et al. 2007. Does cerebellar injury in premature infants contribute to the high prevalence of long-term cognitive, learning, and behavioral disability in survivors?. Pediatrics 120:3584–93
    [Google Scholar]
  89. Limperopoulos C, Chilingaryan G, Sullivan N, Guizard N, Robertson RL, du Plessis AJ 2014. Injury to the premature cerebellum: Outcome is related to remote cortical development. Cereb. Cortex 24:728–36
    [Google Scholar]
  90. Luciani L. 1891. Il Cervelletto: Nuovi Studi Difisiologia Normale e Patologica Firenze: Le Monnier
  91. Malacarne MVG. 1776. Nuova Esposizione della Vera Struttura del Cervelletto Umano Torino: Briolo
  92. Manto M, Mariën P. 2015. Schmahmann's syndrome—identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias 2:2
    [Google Scholar]
  93. Marek S, Siegel JS, Gordon EM, Raut RV, Gratton C et al. 2018. Spatial and temporal organization of the individual human cerebellum. Neuron 100:977–93.e7
    [Google Scholar]
  94. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM et al. 2016. Situating the default-mode network along a principal gradient of macroscale cortical organization. PNAS 113:4412574–79
    [Google Scholar]
  95. Marquand AF, Haak KV, Beckmann CF 2017. Functional corticostriatal connection topographies predict goal-directed behaviour in humans. Nat. Hum. Behav. 1:80146
    [Google Scholar]
  96. Marr D. 1969. A theory of cerebellar function. J. Physiol. 202:437–70
    [Google Scholar]
  97. Matsushita M, Yaginuma H, Tanami T 1992. Somatotopic termination of the spino-olivary fibers in the cat, studied with the wheat germ agglutinin-horseradish peroxidase technique. Exp. Brain Res. 89:2397–407
    [Google Scholar]
  98. Mesulam MM. 1998. From sensation to cognition. Brain 121:61013–52
    [Google Scholar]
  99. Middleton FA, Strick PL. 1994. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:5184458–61
    [Google Scholar]
  100. Moberget T, Doan NT, Alnæs D, Kaufmann T, Córdova-Palomera A et al. 2018. Cerebellar volume and cerebellocerebral structural covariance in schizophrenia: a multisite mega-analysis of 983 patients and 1349 healthy controls. Mol. Psychiatry. 23:61512–20
    [Google Scholar]
  101. Moberget T, Gullesen EH, Andersson S, Ivry RB, Endestad T 2014. Generalized role for the cerebellum in encoding internal models: evidence from semantic processing. J. Neurosci. 34:82871–78
    [Google Scholar]
  102. Molinari M, Leggio MG, Solida A, Ciorra R, Misciagna S et al. 1997. Cerebellum and procedural learning: evidence from focal cerebellar lesions. Brain 120:101753–62
    [Google Scholar]
  103. Morris EB, Phillips NS, Laningham FH, Patay Z, Gajjar A et al. 2009. Proximal dentatothalamocortical tract involvement in posterior fossa syndrome. Brain 132:113087–95
    [Google Scholar]
  104. Mugnaini E, Sekerkova G, Martina M 2011. The unipolar brush cell: a remarkable neuron finally receiving the deserved attention. Brain Res. Rev. 66:1–2220–45
    [Google Scholar]
  105. Neuburger M. 1981. 1897. Die historische Entwicklung der experimentellen Gehirn- und Rückenmarksphysiologie vor Flourens [The historical development of experimental brain and spinal cord physiology before Flourens], transl E Clarke Baltimore, MD: Johns Hopkins Univ. Press
  106. Olivito G, Cercignani M, Lupo M, Iacobacci C, Clausi S et al. 2017a. Neural substrates of motor and cognitive dysfunctions in SCA2 patients: a network based statistics analysis. Neuroimage Clin 14:719–25
    [Google Scholar]
  107. Olivito G, Clausi S, Laghi F, Tedesco AM, Baiocco R et al. 2017b. Resting-state functional connectivity changes between dentate nucleus and cortical social brain regions in Autism spectrum disorders. Cerebellum 16:283–92
    [Google Scholar]
  108. Olivito G, Lupo M, Iacobacci C, Clausi S, Romano S et al. 2017c. Microstructural MRI basis of the cognitive functions in patients with spinocerebellar ataxia type 2. Neuroscience 366:44–53
    [Google Scholar]
  109. Olivito G, Lupo M, Laghi F, Clausi S, Baiocco R et al. 2018. Lobular patterns of cerebellar resting-state connectivity in adults with Autism Spectrum Disorder. Eur. J. Neurosci. 47:729–35
    [Google Scholar]
  110. O'Reilly JX, Beckmann CF, Tomassini V, Ramnani N, Johansen-Berg H 2010. Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cereb. Cortex 20:4953–65
    [Google Scholar]
  111. Oscarsson O. 1965. Functional organization of the spino- and cuneocerebellar tracts. Physiol. Rev. 45:495–522
    [Google Scholar]
  112. Palay S, Chan-Palay V. 1974. Cerebellar Cortex: Cytology and Organization New York: Springer-Verlag
  113. Pandya DN, Seltzer B, Petrides M, Cipolloni PB 2015. Cerebral Cortex. Architecture, Connections, and the Dual Origin Concept New York: Oxford Univ. Press
  114. Parker KL, Kim YC, Kelley RM, Nessler AJ, Chen KH et al. 2017. Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction. Mol. Psychiatry. 22:5647–55
    [Google Scholar]
  115. Paulin MG. 1993. The role of the cerebellum in motor control and perception. Brain Behav. Evol. 41:39–50
    [Google Scholar]
  116. Petersen SE, Fox IT, Posner MI, Mintum MA, Raichle ME 1988. Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331:6157585–89
    [Google Scholar]
  117. Ramón y Cajal S. 1909. Histologie du système nerveux de l'homme et des vertébrés, transl. L Azoulay Paris: A. Maloine
    [Google Scholar]
  118. Rastogi A, Cash R, Dunlop K, Vesia M, Kucyi A et al. 2017. Modulation of cognitive cerebello-cerebral functional connectivity by lateral cerebellar continuous theta burst stimulation. Neuroimage 158:48–57
    [Google Scholar]
  119. Raymond JL, Medina JF. 2018. Computational principles of supervised learning in the cerebellum. Annu. Rev. Neurosci. 41:233–53
    [Google Scholar]
  120. Reil JC. 1808. Fragmente über die bildung des kleinen Gehirns im Menschen. Arch. Physiol. 8:1–58
    [Google Scholar]
  121. Rijntjes M, Buechel C, Kiebel S, Weiller C 1999. Multiple somatotopic representations in the human cerebellum. Neuroreport 10:173653–58
    [Google Scholar]
  122. Riva D, Giorgi C. 2000. The cerebellum contributes to higher function during development: evidence from a series of children surgically treated for posterior fossa tumors. Brain 123:1051–61
    [Google Scholar]
  123. Rolando L. 1809. Saggio Sopra le Vera Struttura del Cervello Dell'uomo e Degli Animali e Sopra le Funzioni del Sistema Nervoso Sassari: Stamperia da SSRM
  124. Ruigrok TJ, Voogd J. 1990. Cerebellar nucleo-olivary projections in the rat: an anterograde tracing study with Phaseolus vulgaris-leucoagglutinin (PHA-L). J. Comp. Neurol. 298:3315–33
    [Google Scholar]
  125. Ruigrok TJ, Voogd J. 2000. Organization of projections from the inferior olive to the cerebellar nuclei in the rat. J. Comp. Neurol. 426:209–28
    [Google Scholar]
  126. Schmahmann JD. 1991. An emerging concept. The cerebellar contribution to higher function. Arch. Neurol. 48:111178–87
    [Google Scholar]
  127. Schmahmann JD. 1994. The cerebellum in autism: clinical and anatomic perspectives. The Neurobiology of Autism ML Bauman, TL Kemper 195–226 Baltimore, MD: Johns Hopkins Univ. Press
    [Google Scholar]
  128. Schmahmann JD. 1996. From movement to thought: anatomic substrates of the cerebellar contribution to cognitive processing. Hum. Brain Mapp. 4:3174–98
    [Google Scholar]
  129. Schmahmann JD 1997. The Cerebellum and Cognition San Diego, CA: Academic
  130. Schmahmann JD. 1998. Dysmetria of thought. Clinical consequences of cerebellar dysfunction on cognition and affect. Trends Cogn. Sci. 2:362–70
    [Google Scholar]
  131. Schmahmann JD. 2000. The role of the cerebellum in affect and psychosis. J. Neurolinguistics 13:189–214
    [Google Scholar]
  132. Schmahmann JD. 2003. Vascular syndromes of the thalamus. Stroke 34:2264–78
    [Google Scholar]
  133. Schmahmann JD. 2004. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J. Neuropsychiatry Clin. Neurosci. 16:3367–78
    [Google Scholar]
  134. Schmahmann JD. 2007. Cerebellum and spinal cord—principles of development, anatomical organization, and functional relevance. Spinocerebellar Degenerations: The Ataxias and Spastic Paraplegias A Brice, S Pulst 1–60 New York: Elsevier
    [Google Scholar]
  135. Schmahmann JD. 2012. Cognitive and behavioral manifestations of cerebellar strokes: their relation to motor control and functional topography in the cerebellum. Stroke Syndromes LR Caplan, J van Gijn 32–51 Cambridge, UK: Cambridge Univ. Press. , 3rd ed..
    [Google Scholar]
  136. Schmahmann JD. 2016. Cerebellum in Alzheimer's disease and frontotemporal dementia: not a silent bystander. Brain 139:51314–18
    [Google Scholar]
  137. Schmahmann JD. 2018. The cerebellum and cognition. Neurosci. Lett. 688:62–75
    [Google Scholar]
  138. Schmahmann JD, MacMore J, Vangel M 2009. Cerebellar stroke without motor deficit: clinical evidence for motor and non-motor domains within the human cerebellum. Neuroscience 162:3852–61
    [Google Scholar]
  139. Schmahmann JD, Pandya DN. 1989. Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J. Comp. Neurol. 289:53–73
    [Google Scholar]
  140. Schmahmann JD, Pandya DN. 1991. Projections to the basis pontis from the superior temporal sulcus and superior temporal region in the rhesus monkey. J. Comp. Neurol. 308:224–48
    [Google Scholar]
  141. Schmahmann JD, Pandya DN. 1993. Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J. Comp. Neurol. 337:194–112
    [Google Scholar]
  142. Schmahmann JD, Pandya DN. 1997a. Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey. J. Neurosci. 17:438–58
    [Google Scholar]
  143. Schmahmann JD, Pandya DN. 1997b. The cerebrocerebellar system. The Cerebellum and Cognition JD Schmahmann 31–60 San Diego, CA: Academic
    [Google Scholar]
  144. Schmahmann JD, Pandya DN. 2006. Fiber Pathways of the Brain New York: Oxford Univ. Press
  145. Schmahmann JD, Pandya DN. 2008. Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex 44:81037–66
    [Google Scholar]
  146. Schmahmann JD, Rosene DL, Pandya DN 2004. The motor corticopontine projection in rhesus monkey. J. Comp. Neurol. 478:248–68
    [Google Scholar]
  147. Schmahmann JD, Sherman JC. 1998. The cerebellar cognitive affective syndrome. Brain 121:4561–79
    [Google Scholar]
  148. Schmahmann JD, Weilburg JB, Sherman JC 2007. The neuropsychiatry of the cerebellum—insights from the clinic. Cerebellum 6:254–67
    [Google Scholar]
  149. Schoch B, Dimitrova A, Gizewski ER, Timmann D 2006. Functional localization in the human cerebellum based on voxelwise statistical analysis: a study of 90 patients. Neuroimage 30:136–51
    [Google Scholar]
  150. Scoville WB, Milner B. 1957. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20:111–21
    [Google Scholar]
  151. Shinn AK, Roh YS, Ravichandran CT, Baker JT, Öngür D, Cohen BM 2017. Aberrant cerebellar connectivity in bipolar disorder with psychosis. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2:5438–48
    [Google Scholar]
  152. Snider RS. 1950. Recent contributions to the anatomy and physiology of the cerebellum. Arch. Neurol. Psychiatry 64:196–219
    [Google Scholar]
  153. Snider RS, Eldred E. 1948. Cerebral projections to the tactile, auditory and visual areas of the cerebellum. Anat. Rec. 100:714
    [Google Scholar]
  154. Snider RS, Eldred E. 1952. Cerebrocerebellar relationships in the monkey. J. Neurophysiol. 15:127–40
    [Google Scholar]
  155. Snider RS, Stowell A. 1944. Receiving areas of the tactile, auditory, and visual systems in the cerebellum. J. Neurophysiol. 7:331–57
    [Google Scholar]
  156. Sokolov AA, Miall RC, Ivry RB 2017. The cerebellum: adaptive prediction for movement and cognition. Trends Cogn. Sci. 2017. 21:5313–32
    [Google Scholar]
  157. Stoodley CJ, D'Mello AM, Ellegood J, Jakkamsetti V, Liu P et al. 2017. Altered cerebellar connectivity in autism and cerebellar-mediated rescue of autism-related behaviors in mice. Nat. Neurosci. 20:1744–51
    [Google Scholar]
  158. Stoodley CJ, MacMore JP, Makris N, Sherman JC, Schmahmann JD 2016. Location of lesion determines motor versus cognitive consequences in patients with cerebellar stroke. Neuroimage Clin 12:765–75
    [Google Scholar]
  159. Stoodley CJ, Schmahmann JD. 2009. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:2489–501
    [Google Scholar]
  160. Stoodley CJ, Valera EM, Schmahmann JD 2010. An fMRI study of intra-individual functional topography in the human cerebellum. Behav. Neurol. 23:1–265–79
    [Google Scholar]
  161. Stoodley CJ, Valera EM, Schmahmann JD 2012. Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study. Neuroimage 59:21560–70
    [Google Scholar]
  162. Sugihara I, Wu HS, Shinoda Y 2001. The entire trajectories of single olivocerebellar axons in the cerebellar cortex and their contribution to cerebellar compartmentalization. J. Neurosci. 21:197715–23
    [Google Scholar]
  163. Tobyne SM, Ochoa WB, Bireley JD, Smith VM, Geurts JJ et al. 2018. Cognitive impairment and the regional distribution of cerebellar lesions in multiple sclerosis. Mult. Scler. 24:1687–95
    [Google Scholar]
  164. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR et al. 2012. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488:647–51
    [Google Scholar]
  165. Turkel SB, Chen LS, Nelson MD, Hyder D, Gilles FH et al. 2004. Case series: acute mood symptoms associated with posterior fossa lesions in children. J. Neuropsychiatry Clin. Neurosci. 16:443–45
    [Google Scholar]
  166. Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E et al. 2013. The WU-Minn human connectome project: an overview. Neuroimage 80:62–79
    [Google Scholar]
  167. Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M 2014. Social cognition and the cerebellum: a meta-analysis of over 350 fMRI studies. Neuroimage 86:554–72
    [Google Scholar]
  168. Van Overwalle F, Baetens K, Mariën P, Vandekerckhove M 2015. Cerebellar areas dedicated to social cognition? A comparison of meta-analytic and connectivity results. Soc. Neurosci. 10:4337–44
    [Google Scholar]
  169. Varoquaux G, Schwartz Y, Poldrack RA, Gauthier B, Bzdok D et al. 2018. Atlases of cognition with large-scale brain mapping. PLOS Comput. Biol. 14:e1006565
    [Google Scholar]
  170. Voogd J, Shinoda Y, Ruigrok TJH, Sugihara I 2013. Cerebellar nuclei and the inferior olivary nuclei: organization and connections. Handbook of the Cerebellum and Cerebellar Disorders M Manto, JD Schmahmann, F Rossi, DL Gruol, N Koibuchi 377–436 Dordrecht: Springer
    [Google Scholar]
  171. Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L 2017. Cerebellar granule cells encode the expectation of reward. Nature 544:96–100
    [Google Scholar]
  172. Walberg F, Bowsher D, Brodal A 1958. The termination of primary vestibular fibers in the vestibular nuclei in the cat. An experimental study with silver methods. J. Comp. Neurol. 110:3391–419
    [Google Scholar]
  173. Wang SS, Kloth AD, Badura A 2014. The cerebellum, sensitive periods, and autism. Neuron 83:3518–32
    [Google Scholar]
  174. Woolsey C. 1952. Summary of the papers on the cerebellum. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 30:334–36
    [Google Scholar]
  175. Zanatta A, Cherici C, Bargoni A, Buzzi S, Cani V et al. 2018. Vincenzo Malacarne (1744–1816) and the first description of the human cerebellum. Cerebellum 17:4461–64
    [Google Scholar]
  176. Zhou H, Lin Z, Voges K, Ju C, Gao Z et al. 2014. Cerebellar modules operate at different frequencies. eLife 3:e02536
    [Google Scholar]
/content/journals/10.1146/annurev-neuro-070918-050258
Loading
/content/journals/10.1146/annurev-neuro-070918-050258
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error