1932

Abstract

Microbial communities are complex and dynamic, composed of hundreds of taxa interacting across multiple spatial scales. Advances in sequencing and imaging technology have led to great strides in understanding both the composition and the spatial organization of these complex communities. In the human mouth, sequencing results indicate that distinct sites host microbial communities that not only are distinguishable but to a meaningful degree are composed of entirely different microbes. Imaging suggests that the spatial organization of these communities is also distinct. Together, the literature supports the idea that most oral microbes are site specialists. A clear understanding of microbiota structure at different sites in the mouth enables mechanistic studies, informs the generation of hypotheses, and strengthens the position of oral microbiology as a model system for microbial ecology in general.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090817-062503
2019-09-08
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/annurev-micro-090817-062503.html?itemId=/content/journals/10.1146/annurev-micro-090817-062503&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE 2005. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43:5721–32
    [Google Scholar]
  2. 2. 
    Al-Ahmad A, Follo M, Selzer A-C, Hellwig E, Hannig M, Hannig C 2009. Bacterial colonization of enamel in situ investigated using fluorescence in situ hybridization. J. Med. Microbiol. 58:1359–66
    [Google Scholar]
  3. 3. 
    Al-Ahmad A, Wunder A, Auschill TM, Follo M, Braun G et al. 2007. The in vivo dynamics of Streptococcus spp., Actinomyces naeslundii, Fusobacterium nucleatum and Veillonella spp. in dental plaque biofilm as analysed by five-colour multiplex fluorescence in situ hybridization. J. Med. Microbiol. 56:681–87
    [Google Scholar]
  4. 4. 
    Al-hebshi NN, Abdulhaq A, Albarrag A, Basode VK, Chen T 2016. Species-level core oral bacteriome identified by 16S rRNA pyrosequencing in a healthy young Arab population. J. Oral Microbiol. 8:31444. https://doi.org/10.3402/jom.v8.31444
    [Crossref] [Google Scholar]
  5. 5. 
    Asikainen P, Sirviö E, Mikkonen JJW, Singh SP, Schulten EAJM et al. 2015. Microplicae—specialized surface structure of epithelial cells of wet-surfaced oral mucosa. Ultrastruct. Pathol. 39:5299–305
    [Google Scholar]
  6. 6. 
    Barros SP, Williams R, Offenbacher S, Morelli T 2016. Gingival crevicular fluid as a source of biomarkers for periodontitis. Periodontology 2000 70:53–64
    [Google Scholar]
  7. 7. 
    Bik EM, Long CD, Armitage GC, Loomer P, Emerson J et al. 2010. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J 4:8962–74
    [Google Scholar]
  8. 8. 
    Callahan B, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP 2016. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13:7581–83 https://doi.org/10.1038/nmeth.3869
    [Crossref] [Google Scholar]
  9. 9. 
    Chavez-López C, De Angelis M, Martuscelli M, Serio A, Paparella A, Suzzi G 2006. Characterization of the Enterobacteriaceae isolated from an artisanal Italian ewe's cheese (Pecorino Abruzzese). J. Appl. Microbiol. 101:353–60 http://doi.org/10.1111/j.1365-2672.2006.02941.x
    [Crossref] [Google Scholar]
  10. 10. 
    Clemente JC, Pehrsson EC, Blaser MJ, Sandhu K, Gao Z, Wang B et al. 2015. The microbiome of uncontacted Amerindians. Sci. Adv. 1:e1500183 https://doi.org/10.1126/sciadv.1500183
    [Crossref] [Google Scholar]
  11. 11. 
    Costea PI, Coelho LP, Sunagawa S, Munch R, Huerta-Cepas J et al. 2017. Subspecies in the global human gut microbiome. Mol. Syst. Biol. 13:960 https://doi.org/10.15252/msb.20177589
    [Crossref] [Google Scholar]
  12. 12. 
    Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R 2009. Bacterial community variation in human body habitats across space and time. Science 326:1694–97 http://doi.org/10.1126/science.1177486
    [Crossref] [Google Scholar]
  13. 13. 
    David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC et al. 2014. Host lifestyle affects human microbiota on daily timescales. Genome Biol 15:R89 https://doi.org/10.1186/gb-2014-15-7-r89
    [Crossref] [Google Scholar]
  14. 14. 
    Dawes C. 1972. Circadian rhythms in human salivary flow rate and composition. J. Physiol. 220:529–45
    [Google Scholar]
  15. 15. 
    Dawes C. 1989. An analysis of factors influencing diffusion from dental plaque into a moving film of saliva and the implications for caries. J. Dent. Res. 68:1483–88
    [Google Scholar]
  16. 16. 
    Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner ACR et al. 2010. The human oral microbiome. J. Bacteriol. 192:5002–17 https://doi.org/10.1128/JB.00542-10 Curated characterization of the oral microbiome that established a provisional naming system for oral phylotypes.
    [Crossref] [Google Scholar]
  17. 17. 
    Diaz PI, Chalmers NI, Rickard AH, Kong C, Milburn CL et al. 2006. Molecular characterization of subject-specific oral microflora during initial colonization of enamel. Appl. Environ. Microbiol. 72:42837–48
    [Google Scholar]
  18. 18. 
    Diaz PI, Dupuy AK, Abusleme L, Reese B, Obergfell C et al. 2012. Using high throughput sequencing to explore the biodiversity in oral bacterial communities. Mol. Oral Microbiol. 27:182–201
    [Google Scholar]
  19. 19. 
    Dige I, Grønkjær L, Nyvad B 2014. Molecular studies of the structural ecology of natural occlusal caries. Caries Res 48:451–60
    [Google Scholar]
  20. 20. 
    Dige I, Nilsson H, Kilian M, Nyvad B 2007. In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization. Eur. J. Oral Sci. 115:459–67
    [Google Scholar]
  21. 21. 
    Dige I, Raarup MK, Nyengaard JR, Kilian M, Nyvad B 2009. Actinomyces naeslundii in initial dental biofilm formation. Microbiology 155:2116–26
    [Google Scholar]
  22. 22. 
    Drescher J, Schlafer S, Schaudinn C, Riep B, Neumann K et al. 2010. Molecular epidemiology and spatial distribution of Selenomonas spp. in subgingival biofilms. Eur. J. Oral Sci. 118:466–74
    [Google Scholar]
  23. 23. 
    Edlund A, Yang Y, Yooseph S, He X, Shi W, McLean JS 2018. Uncovering complex microbiome activities via metatranscriptomics during 24 hours of oral biofilm assembly and maturation. Microbiome 6:217 https://doi.org/10.1186/s40168-018-0591-4
    [Crossref] [Google Scholar]
  24. 24. 
    Eliasson L, Carlén A. 2010. An update on minor salivary gland secretions. Eur. J. Oral Sci. 118:435–442 https://doi.org/10.1111/j.1600-0722.2010.00766.x
    [Crossref] [Google Scholar]
  25. 25. 
    Eren AM, Borisy GG, Huse SM, Mark Welch JL 2014. Oligotyping analysis of the human oral microbiome. PNAS 111:E2875–84 https://doi.org/10.1073/pnas.1409644111 High-resolution analysis of oral microbiome sequence data showing that closely related taxa live in different habitats.
    [Crossref] [Google Scholar]
  26. 26. 
    Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL et al. 2013. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol. Evol. 4:1111–19 https://doi.org/10.1111/2041-210X.12114
    [Crossref] [Google Scholar]
  27. 27. 
    Escapa IF, Chen T, Huang Y, Gajare P, Dewhirst FE, Lemon K 2018. New insights into human nostril microbiome from the expanded Human Oral Microbiome Database (eHOMD): a resource for the microbiome of the human aerodigestive tract. mSystems 3:6e00187–18
    [Google Scholar]
  28. 28. 
    Espinoza JL, Harkins DM, Torralba M, Gomez A, Highlander SK et al. 2018. Supragingival plaque microbiome ecology and functional potential in the context of health and disease. mBio 9:6e01631–18 https://doi.org/10.1128/mBio.01631-18
    [Crossref] [Google Scholar]
  29. 29. 
    Gibbons RJ, Kapsimalis B, Socransky SS 1964. The source of salivary bacteria. Arch. Oral Biol. 9:101–3
    [Google Scholar]
  30. 30. 
    Gibbons RJ, Socransky SS, de Araujo WC, van Houte J 1964. Studies of the predominant cultivable microbiota of dental plaque. Arch. Oral Biol. 9:365–70
    [Google Scholar]
  31. 31. 
    Gibbons RJ, Socransky SS, Sawyer S, Kapsimalis B, MacDonald JB 1963. The microbiota of the gingival crevice area of man. II. The predominant cultivable organisms. Arch. Oral Biol. 8:281–89
    [Google Scholar]
  32. 32. 
    Gibbons RJ, van Houte J 1975. Bacterial adherence in oral microbial ecology. Annu. Rev. Microbiol. 29:19–42
    [Google Scholar]
  33. 33. 
    Gloor GB, Wu JR, Pawlowsky-Glahn V, Egozcue JJ 2016. It's all relative: analyzing microbiome data as compositions. Ann. Epidemiol. 26:322–29 https://doi.org/10.1016/j.annepidem.2016.03.003
    [Crossref] [Google Scholar]
  34. 34. 
    Gordon DF Jr., Gibbons RJ. 1966. Studies of the predominant cultivable micro-organisms from the human tongue. Arch. Oral Biol. 11:627–32
    [Google Scholar]
  35. 35. 
    Gordon DF Jr., Jong BB. 1968. Indigenous flora from human saliva. Appl. Microbiol. 16:2428–29
    [Google Scholar]
  36. 36. 
    Haffajee AD, Teles RP, Patel MR, Song X, Yaskell T, Socransky SS 2009. Factors affecting human supragingival biofilm composition. II. Tooth position. J. Periodontal Res. 44:520–28
    [Google Scholar]
  37. 37. 
    Hall MW, Singh N, Ng KF, Lam DK, Goldberg MB et al. 2017. Inter-personal diversity and temporal dynamics of dental, tongue, and salivary microbiota in the healthy oral cavity. npj Biofilms Microbiomes 3:2 https://doi.org/10.1038/s41522-016-0011-0
    [Crossref] [Google Scholar]
  38. 38. 
    Hannig C, Hannig M, Kensche A, Carpenter G 2017. The mucosal pellicle—an underestimated factor in oral physiology. Arch. Oral Biol. 80:144–52
    [Google Scholar]
  39. 39. 
    Helmerhorst EJ, Dawes C, Oppenheim FG 2018. The complexity of oral physiology and its impact on salivary diagnostics. Oral Dis 24:363–71 https://doi.org/10.1111/odi.12780
    [Crossref] [Google Scholar]
  40. 40. 
    Hum. Microbiome Proj. Consort 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14 https://doi.org/10.1038/nature11234
    [Crossref] [Google Scholar]
  41. 41. 
    Jenkins GN, Krebsbach PH. 1985. Experimental study of the migration of charcoal particles in the human mouth. Arch. Oral Biol. 30:9697–99
    [Google Scholar]
  42. 42. 
    Jiang W-X, Hu Y-J, Gao L, He Z-Y, Zhu C-L et al. 2015. The impact of various time intervals on the supragingival plaque dynamic core microbiome. PLOS ONE 10:e0124631 https://doi.org/10.1371/journal.pone.0124631
    [Crossref] [Google Scholar]
  43. 43. 
    Keijser BJF, Zaura E, Huse SM, van der Vossen JMBM, Schuren FHJ et al. 2008. Pyrosequencing analysis of the oral microflora of healthy adults. J. Dent. Res. 87:1016 https://doi.org/10.1177/154405910808701104
    [Crossref] [Google Scholar]
  44. 44. 
    Kleinberg I, Jenkins GN. 1964. The pH of dental plaques in the different areas of the mouth before and after meals and their relationship to the pH and rate of flow of resting saliva. Arch. Oral Biol. 9:493–516
    [Google Scholar]
  45. 45. 
    Kolenbrander PE, Palmer RJ Jr., Periasamy S, Jakubovics NS 2010. Oral multispecies biofilm development and the key role of cell-cell distance. Nat. Rev. Microbiol. 8:471–80
    [Google Scholar]
  46. 46. 
    Kolenbrander PE, Palmer RJ Jr., Rickard AH, Jakubovics NS, Chalmers NI, Diaz PI 2006. Bacterial interactions and successions during plaque development. Periodontology 2000 42:47–79A comprehensive review of coaggregation and taxon-taxon interactions in oral microbial communities.
    [Google Scholar]
  47. 47. 
    Kraal L, Abubucker S, Kota K, Fischbach MA, Mitreva M 2014. The prevalence of species and strains in the human microbiome: a resource for experimental efforts. PLOS ONE 9:5e97279 https://doi.org/10.1371/journal.pone.0097279
    [Crossref] [Google Scholar]
  48. 48. 
    Kullaa AM, Asikainen P, Herrala M, Ukkonen H, Mikkonen JJW 2014. Microstructure of oral epithelial cells as an underlying basis for salivary mucosal pellicle. Ultrastruct. Pathol. 38:6382–86 https://doi.org/10.3109/01913123.2014.944732
    [Crossref] [Google Scholar]
  49. 49. 
    Kullaa-Mikkonen A, Hynynen M, Hyvönen P 1987. Filiform papillae of human, rat and swine tongue. Acta Anatomica 130:280–84
    [Google Scholar]
  50. 50. 
    Kumar P, Mason MR. 2015. Mouthguards: does the indigenous microbiome play a role in maintaining oral health. ? Front. Cell. Infect. Microbiol. 5:35 https://doi.org/10.3389/fcimb.2015.00035
    [Crossref] [Google Scholar]
  51. 51. 
    Kung RTV, Ohs B, Goodson JM 1990. Temperature as a periodontal diagnostic. J. Clin. Periodontol. 17:557–63
    [Google Scholar]
  52. 52. 
    Lecomte P, Dawes C. 1987. The influence of salivary flow rate on diffusion of potassium chloride from artificial plaque at different sites in the mouth. J. Dent. Res. 66:1614–18
    [Google Scholar]
  53. 53. 
    Li F, Tao D, Feng X, Wong MCM, Lu H 2018. Establishment and development of oral microflora in 12–24 month-old toddlers monitored by high-throughput sequencing. Front. Cell. Infect. Microbiol. 8:422 https://doi.org/10.3389/fcimb.2018.00422
    [Crossref] [Google Scholar]
  54. 54. 
    Li J, Quinque D, Horz H-P, Li M, Rzhetskaya M et al. 2014. Comparative analysis of the human saliva microbiome from different climate zones: Alaska, Germany, and Africa. BMC Microbiol 14:316 https://doi.org/10.1186/s12866-014-0316-1
    [Crossref] [Google Scholar]
  55. 55. 
    Listgarten MA, Mayo H, Amsterdam M 1973. Ultrastructure of the attachment device between coccal and filamentous micro-organisms in “corn cob” formations of dental plaque. Arch. Oral Biol. 18:651–56
    [Google Scholar]
  56. 56. 
    Listgarten MA, Mayo HE, Tremblay R 1975. Development of dental plaque on epoxy resin crowns in man: a light and electron microscopic study. J. Periodontol. 46:10–26
    [Google Scholar]
  57. 57. 
    Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J et al. 2017. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550:61–66Groundbreaking analysis of whole-metagenome data showing strain distribution across body sites, individuals, and time.
    [Google Scholar]
  58. 58. 
    Mager DL, Ximinez-Fyvie LA, Haffajee AD, Socransky SS 2003. Distribution of selected bacterial species on intraoral surfaces. J. Clin. Periodontol. 30:644–54Characterization of bacterial communities in 11 oral habitats using checkerboard hybridization.
    [Google Scholar]
  59. 59. 
    Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, Borisy GG 2016. Biogeography of a human oral microbiome at the micron scale. PNAS 113:E791–800 https://doi.org/10.1073/pnas.1522149113 Imaging of dental plaque using spectral imaging fluorescence in situ hybridization reveals complex organized consortia.
    [Crossref] [Google Scholar]
  60. 60. 
    Mark Welch JL, Utter DR, Rossetti BJ, Mark Welch DB, Eren AM, Borisy GG 2014. Dynamics of tongue microbial communities with single-nucleotide resolution using oligotyping. Front. Microbiol. 5:568 https://doi.org/10.3389/fmicb.2014.00568
    [Crossref] [Google Scholar]
  61. 61. 
    Marsh PD, Moter A, Devine DA 2011. Dental plaque biofilms: communities, conflict and control. Periodontology 2000 55:16–35
    [Google Scholar]
  62. 62. 
    Mason MR, Chambers S, Dabdoub SM, Thikkurissy S, Kumar PS 2018. Characterizing oral microbial communities across dentition states and colonization niches. Microbiome 6:167 https://doi.org/10.1186/s40168-018-0443-2
    [Crossref] [Google Scholar]
  63. 63. 
    Mason MR, Nagaraja HN, Camerlengo T, Joshi V, Kumar PS 2013. Deep sequencing identifies ethnicity-specific bacterial signatures in the oral microbiome. PLOS ONE 8:e77287 https://doi.org/10.1371/journal.pone.0077287
    [Crossref] [Google Scholar]
  64. 64. 
    Mettraux GR, Gusberti FA, Graf H 1984. Oxygen tension (pO2) in untreated human periodontal pockets. J. Periodontol. 55:9516–21
    [Google Scholar]
  65. 65. 
    Nasidze I, Li J, Quinque D, Tang K, Stoneking M 2009. Global diversity in the human salivary microbiome. Genome Res 19:636–43 https://doi.org/10.1101/gr.084616.108
    [Crossref] [Google Scholar]
  66. 66. 
    Nobbs AH, Lamont RJ, Jenkinson HF 2009. Streptococcus adherence and colonization. Microbiol. Mol. Biol. Rev. 73:3407–50 https://doi.org/10.1128/MMBR.00014-09
    [Crossref] [Google Scholar]
  67. 67. 
    Noiri Y, Li L, Ebisu S 2001. The localization of periodontal-disease-associated bacteria in human periodontal pockets. J. Dent. Res. 80:101930–34
    [Google Scholar]
  68. 68. 
    Noiri Y, Li L, Yoshimura F, Ebisu S 2004. Localization of Porphyromonas gingivalis-carrying fimbriae in situ in human periodontal pockets. J. Dent. Res. 83:12941–45
    [Google Scholar]
  69. 69. 
    Noiri Y, Ozaki K, Nakae H, Matsuo T, Ebisu S 1997. An immunohistochemical study on the localization of Porphyromonas gingivalis, Campylobacter rectus and Actinomyces viscosus in human periodontal pockets. J. Periodontal Res. 32:598–607
    [Google Scholar]
  70. 70. 
    Nyvad B, Fejerskov O. 1987. Scanning electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scand. J. Dent. Res. 95:287–96
    [Google Scholar]
  71. 71. 
    Nyvad B, Fejerskov O. 1987. Transmission electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scand. J. Dent. Res. 85:297–307
    [Google Scholar]
  72. 72. 
    Palmer RJ Jr., Diaz PI, Kolenbrander PE. 2006. Rapid succession within the Veillonella population of a developing human oral biofilm in situ. J. Bacteriol. 188:114117–24
    [Google Scholar]
  73. 73. 
    Palmer RJ Jr., Gordon SM, Cisar JO, Kolenbrander PE. 2003. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J. Bacteriol. 185:113400–9
    [Google Scholar]
  74. 74. 
    Palmer RJ Jr., Shah N, Valm A, Paster B, Dewhirst F et al. 2017. Interbacterial adhesion networks within early oral biofilms of single human hosts. Appl. Environ. Microbiol. 83:e00407–17 https://doi.org/10.1128/AEM.00407-17
    [Crossref] [Google Scholar]
  75. 75. 
    Peterson SN, Meissner T, Su AI, Snesrud E, Ong AC et al. 2014. Functional expression of dental plaque microbiota. Front. Cell Infect. Microbiol. 4:108 https://doi.org/10.3389/fcimb.2014.00108
    [Crossref] [Google Scholar]
  76. 76. 
    Proctor DM, Fukuyama JA, Loomer PM, Armitage GC, Lee SA et al. 2018. A spatial gradient of bacterial diversity in the human oral cavity shaped by salivary flow. Nat. Commun. 9:681 https://doi.org/10.1038/s41467-018-02900-1
    [Crossref] [Google Scholar]
  77. 77. 
    Proctor DM, Relman DA. 2017. The landscape ecology and microbiota of the human nose, mouth, and throat. Cell Host Microbe 21:421–32Introduces concepts of spatial ecology to analyze community structure in the human mouth and nasopharynx.
    [Google Scholar]
  78. 78. 
    Sands KM, Twigg JA, Lewis MAO, Wise MP, Marchesi JR et al. 2016. Microbial profiling of dental plaque from mechanically ventilated patients. J. Med. Microbiol. 65:2147–59 https://doi.org/10.1099/jmm.0.000212
    [Crossref] [Google Scholar]
  79. 79. 
    Sato Y, Yamagishi J, Yamashita R, Shinozaki N, Ye B et al. 2015. Inter-individual differences in the oral bacteriome are greater than intra-day fluctuations in individuals. PLOS ONE 10:6e0131607 https://doi.org/10.1371/journal.pone.0131607
    [Crossref] [Google Scholar]
  80. 80. 
    Segata N, Kinder Haake S, Mannon P, Lemon KP, Waldron L et al. 2012. Composition of the adult digestive tract bacterial microbiome based on seven mouth surfaces, tonsils, throat and stool samples. Genome Biol 13:R42Analysis of Human Microbiome Project data showing sites separating into groups with similar microbial composition.
    [Google Scholar]
  81. 81. 
    Shi W, Tian J, Xu H, Zhou Q, Qin M 2018. Distinctions and associations between the microbiota of saliva and supragingival plaque of permanent and deciduous teeth. PLOS ONE 13:7e0200337 https://doi.org/10.1371/journal.pone.0200337
    [Crossref] [Google Scholar]
  82. 82. 
    Simón-Soro Á, Tomás I, Cabrera-Rubio R, Catalan MD, Nyvad B, Mira A 2013. Microbial geography of the oral cavity. J. Dent. Res. 92:7616–21
    [Google Scholar]
  83. 83. 
    Siqueira WL, Salih E, Wan DL, Helmerhorst EJ, Oppenheim FG 2008. Proteome of human minor salivary gland secretion. J. Dent. Res. 87:5445–50
    [Google Scholar]
  84. 84. 
    Socransky SS, Gibbons RJ, Dale AC, Bortnick L, Rosenthal E, MacDonald JB 1963. The microbiota of the gingival crevice area of man. I. Total microscopic and viable counts and counts of specific organisms. Arch. Oral Biol. 8:275–80
    [Google Scholar]
  85. 85. 
    Socransky SS, Haffajee AD. 2005. Periodontal microbial ecology. Periodontology 2000 38:135–87
    [Google Scholar]
  86. 86. 
    Socransky SS, Haffajee AD, Goodson JM, Lindhe J 1984. New concepts of destructive periodontal disease. J. Clin. Periodontol. 11:121–32
    [Google Scholar]
  87. 87. 
    Socransky SS, Manganiello SD. 1971. The oral microbiota of man from birth to senility. J. Periodontol. 42:8485–96An incisive review of variability, adhesion, physiology, and other factors structuring the oral microbiota.
    [Google Scholar]
  88. 88. 
    Socransky SS, Smith C, Martin L, Paster BJ, Dewhirst FE, Levin AE 1994. “Checkerboard” DNA-DNA hybridization. Biotechniques 17:788–92
    [Google Scholar]
  89. 89. 
    Stewart PS. 2003. Diffusion in biofilms. J. Bacteriol. 185:51485–91 https://doi.org/10.1128/JB.185.5.1485-1491.2003
    [Crossref] [Google Scholar]
  90. 90. 
    Stewart PS, Franklin MJ. 2008. Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6:199–210 https://doi.org/10.1038/nrmicro1838
    [Crossref] [Google Scholar]
  91. 91. 
    Takeshita T, Matsuo K, Furuta M, Shibata Y, Fukami K et al. 2014. Distinct composition of the oral indigenous microbiota in South Korean and Japanese adults. Sci. Rep. 4:6990 https://doi.org/10.1038/srep06990
    [Crossref] [Google Scholar]
  92. 92. 
    Tamang JP, Watanabe K, Holzapfel WH 2016. Review: diversity of microorganisms in global fermented foods and beverages. Front. Microbiol. 7:377 https://doi.org/10.3389/fmicb.2016.00377
    [Crossref] [Google Scholar]
  93. 93. 
    Thurnheer T, Gmür R, Guggenheim B 2004. Multiplex FISH analysis of a six-species bacterial biofilm. J. Microbiol. Methods 56:37–47
    [Google Scholar]
  94. 94. 
    Utter DR, Mark Welch JL, Borisy GG 2016. Individuality, stability, and variability of the plaque microbiome. Front. Microbiol. 7:564 https://doi.org/10.3389/fmicb.2016.00564
    [Crossref] [Google Scholar]
  95. 95. 
    Valm AM, Mark Welch JL, Borisy GG 2012. CLASI-FISH: principles of combinatorial labeling and spectral imaging. Syst. Appl. Microbiol. 35:8496–502 https://doi.org/10.1016/j.syapm.2012.03.004
    [Crossref] [Google Scholar]
  96. 96. 
    Valm AM, Mark Welch JL, Rieken CW, Hasegawa Y, Sogin ML et al. 2011. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. PNAS 108:104152–57 https://doi.org/10.1073/pnas.1101134108
    [Crossref] [Google Scholar]
  97. 97. 
    Valm AM, Oldenbourg R, Borisy GG 2016. Multiplexed spectral imaging of 120 different fluorescent labels. PLOS ONE 11:7e0158495 https://doi.org/10.1371/journal.pone.0158495
    [Crossref] [Google Scholar]
  98. 98. 
    Veerman ECI, Van den Keybus PAM, Vissink A, Nieuw Amerongen AV 1996. Human glandular salivas: their separate collection and analysis. Eur. J. Oral Sci. 104:346–52
    [Google Scholar]
  99. 99. 
    Wecke J, Kersten T, Madela K, Moter A, Göbel UB, Friedmann A, Mernimoulin J-P 2000. A novel technique for monitoring the development of bacterial biofilms in periodontal pockets. FEMS Microbiol. Lett. 191:95–101
    [Google Scholar]
  100. 100. 
    Wessel AK, Arshad TA, Fitzpatrick M, Connell JL, Bonnecaze RT et al. 2014. Oxygen limitation within a bacterial aggregate. mBio 5:2e00992–14 https://doi.org/10.1128/mBio.00992-14
    [Crossref] [Google Scholar]
  101. 101. 
    Wimpenny JWT, Coombs JP. 1983. Penetration of oxygen into bacterial colonies. J. Gen. Microbiol. 129:1239–42
    [Google Scholar]
  102. 102. 
    Wood SR, Kirkham J, Marsh PD, Shore RC, Nattress B, Robinson C 2000. Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J. Dent. Res. 79:121–27
    [Google Scholar]
  103. 103. 
    Ximénez-Fyvie LA, Haffajee AD, Socransky SS 2000. Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. J. Clin. Periodontol. 27:648–57
    [Google Scholar]
  104. 104. 
    Xu X, He J, Xue J, Wang Y, Li K et al. 2015. Oral cavity contains distinct niches with dynamic microbial communities. Environ. Microbiol. 17:699–710 https://doi.org/10.1111/1462-2920.12502
    [Crossref] [Google Scholar]
  105. 105. 
    Zaura E, Keijser BJF, Huse SM, Crielaard W 2009. Defining the healthy “core microbiome” of oral microbial communities. BMC Microbiol 9:259 https://doi.org/10.1186/1471-2180-9-259
    [Crossref] [Google Scholar]
  106. 106. 
    Zheng L, Seon YJ, McHugh J, Papagerakis S, Papagerakis P 2012. Clock genes show circadian rhythms in salivary glands. J. Dent. Res. 91:8783–88 https://doi.org/10.1177/0022034512451450
    [Crossref] [Google Scholar]
  107. 107. 
    Zhou Y, Gao H, Mihindukulasuriya KA, La Rosa PS, Wylie KM et al. 2013. Biogeography of the ecosystems of the healthy human body. Genome Biol 14:R1
    [Google Scholar]
  108. 108. 
    Zijnge VM, van Leeuwen BM, Degener JE, Abbas F, Thurnheer T et al. 2010. Oral biofilm architecture on natural teeth. PLOS ONE 5:2e9321 https://doi.org/10.1371/journal.pone.0009321 Imaging of biofilm on teeth using 29 fluorescent probes shows biofilm architecture and taxon distribution.
    [Crossref] [Google Scholar]
  109. 109. 
    Zuo G, Xu Z, Hao B 2013. Shigella strains are not clones of Escherichia coli but sister species in the genus Escherichia. Genom. Proteom. Bioinform. 11:161–65 https://doi.org/10.1016/j.gpb.2012.11.002
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-micro-090817-062503
Loading
/content/journals/10.1146/annurev-micro-090817-062503
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error