skip to main content
article

Continuum crowds

Published:01 July 2006Publication History
Skip Abstract Section

Abstract

We present a real-time crowd model based on continuum dynamics. In our model, a dynamic potential field simultaneously integrates global navigation with moving obstacles such as other people, efficiently solving for the motion of large crowds without the need for explicit collision avoidance. Simulations created with our system run at interactive rates, demonstrate smooth flow under a variety of conditions, and naturally exhibit emergent phenomena that have been observed in real crowds.

Skip Supplemental Material Section

Supplemental Material

p1160-treuille-high.mov

mov

58 MB

p1160-treuille-low.mov

mov

26.1 MB

References

  1. Arkin, R. 1987. In 1987 IEEE International Conference on Robotics and Automation., vol. 4, 264--271.Google ScholarGoogle Scholar
  2. Bayazit, O. B., Lien, J.-M., and Amato, N. M. 2002. Better group behaviors in complex environments with global roadmaps. In Int. Conf. on the Sim. and Syn. of Living Sys. (Alife), 362--370. Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. Bennewitz, M., and Burgard, W. 2001. Finding solvable priority schemes for decoupled path planning techniquesfor teams of mobile robots. Proceedings of the 9th International Symposium on Intelligent Robotic Systems (SIRS).Google ScholarGoogle Scholar
  4. Brogan, D. C., and Hodgins, J. K. 1997. Group behaviors for systems with significant dynamics. In Autonomous Robots, 137--153. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. Chenney, S. 2004. Flow tiles. In 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 233--242. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. Clements, R. R., and Hughes, R. L. 2004. Mathematical modelling of a mediaeval battle: the battle of Agincourt, 1415. Math. Comput. Simul. 64, 2, 259--269. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. Colombo, R. M., and Rosini, M. D. 2005. Pedestrian flows and nonclassical shocks. Mathematical Methods in the Applied Sciences 28, 13.Google ScholarGoogle ScholarCross RefCross Ref
  8. Cordeiro, O. C., Braun, A., Silveira, C. B., Musse, S. R., and Cavalheiro, G. G. H. 2005. Concurrency on social forces simulation model. First International Workshop on Crowd Simulation.Google ScholarGoogle Scholar
  9. Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual Simulation of Smoke. In Computer Graphics (SIGGRAPH 2001), ACM, 15--22. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Feurtey, F. 2000. Dept. of EE. Master's thesis, univ. of Tokyo.Google ScholarGoogle Scholar
  11. Funge, J., Tu, X., and Terzopoulos, D. 1999. Cognitive modeling: Knowledge, reasoning and planning for intelligent characters. In Proceedings of SIGGRAPH 99, Computer Graphics Proceedings, Annual Conference Series, 29--38. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Goldenstein, S., Karavelas, M., Metaxas, D., Guibas, L., Aaron, E., and Goswami, A. 2001. Scalable nonlinear dynamical systems for agent steering and crowd simulation. Computers & Graphics 25, 6 (Dec.), 983--998.Google ScholarGoogle ScholarCross RefCross Ref
  13. Heïgeas, L., Luciani, A., Thollot, J., and Castagné, N. 2003. A physically-based particle model of emergent crowd behaviors. In GraphiCon.Google ScholarGoogle Scholar
  14. Helbing, D., Molnár, P., and Schweitzer, F. 1994. Computer simulations of pedestrian dynamics and trail formation. In Evolution of Natural Structures, 229--234.Google ScholarGoogle Scholar
  15. Helbing, D., Molnár, P., Farkas, I. J., and Bolay, K. 2001. Self-organizing pedestrian movement. Environment and Planning B: Planning and Design 28, 361--383.Google ScholarGoogle ScholarCross RefCross Ref
  16. Helbing, D., Buzna, L., and Werner, T. 2003. Self-organized pedestrian crowd dynamics and design solutions. Traffic Forum 12.Google ScholarGoogle Scholar
  17. Hongwan, L., Wai, F. K., and Chor, C. H. 2003. A study of pedestrian flow using fluid dynamics. Tech. rep.Google ScholarGoogle Scholar
  18. Hughes, R. L. 2002. A continuum theory for the flow of pedestrians. Transportation Research Part B 36, 6 (july), 507535.Google ScholarGoogle ScholarCross RefCross Ref
  19. Hughes, R. L. 2003. The flow of human crowds. Annu. Rev. Fluid Mech. 35, 169--182.Google ScholarGoogle ScholarCross RefCross Ref
  20. Kamphuis, A., and Overmars, M. H. 2004. Finding paths for coherent groups using clearance. In 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 19--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Ketchell, N. 2002. A technical summary of the aea egress code. Tech. Rep. 1, AEA Technology.Google ScholarGoogle Scholar
  22. Kimmel, R., and Sethian, J. A. 2001. Optimal Algorithms for Shape from Shading and Path Planning. Journal of Mathematical Imaging and Vision 14, 237--244. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Kirchner, A., and Schadschneider, A. 2002. Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. In Physica A, vol. 312, 260--276.Google ScholarGoogle ScholarCross RefCross Ref
  24. Lamarche, F., and Donikian, S. 2004. Crowd of virtual humans: a new approach for real time navigation in complex and structured environments. Computer Graphics Forum 23, 3 (Sept.), 509--518.Google ScholarGoogle ScholarCross RefCross Ref
  25. Li, T.-T., and Chou, H.-C. 2003. Motion planning for a crowd of robots. In IEEE International Conference on Robotics and Automation.Google ScholarGoogle Scholar
  26. Li, T.-Y., Leng, Y.-J., and Chang, S.-I. 2001. Simulating virtual crowds with a leader-follower model. In Proceedings of 2001 Computer Animation Conference.Google ScholarGoogle Scholar
  27. Loscos, C., Marchal, D., and Meyer, A. 2003. Intuitive crowd behaviour in dense urban environments using local laws. In Theory and Practice of Computer Graphics (TPCG'03). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Massive Software, 2006. http://www.massivesoftware.com.Google ScholarGoogle Scholar
  29. Metoyer, R. A., and Hodgins, J. K. 2004. Reactive pedestrian path following from examples. The Visual Computer 20, 10, 635--649.Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Musse, S. R., and Thalmann, D. 1997. A model of human crowd behavior: Group inter-relationship and collision detection analysis. In Computer Animation and Simulation '97, 39--51.Google ScholarGoogle Scholar
  31. Musse, S. R., Babski, C., Capin, T., and Thalmann, D. 1998. Crowd modelling in collaborative virtual environments. In Proceedings of the ACM symposium on Virtual reality software and technology, 115--123. Google ScholarGoogle ScholarDigital LibraryDigital Library
  32. OpenSteer, 2006. http://opensteer.sourceforge.net.Google ScholarGoogle Scholar
  33. Parker, L. E. 1993. Designing control laws for cooperative agent teams. In IEEE International Conference on Robotics and Automation, 582--587.Google ScholarGoogle ScholarCross RefCross Ref
  34. Pelechano, N., OBrien, K., Silverman, B., and Badler, N. 2005. Crowd simulation incorporating agent psychological models, roles and communication. First International Workshop on Crowd Simulation.Google ScholarGoogle Scholar
  35. Pettré, J., Laumond, J.-P., and Thalmann, D. 2005. A navigation graph for real-time crowd animation on multilayered and uneven terrain. First International Workshop on Crowd Simulation.Google ScholarGoogle Scholar
  36. Reynolds, C. W. 1987. Flocks, herds, and schools: A distributed behavioral model. In Computer Graphics (Proceedings of SIGGRAPH 87), vol. 21, 25--34. Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. Reynolds, C., 1999. Steering behaviors for autonomous characters.Google ScholarGoogle Scholar
  38. Shao, W., and Terzopoulos, D. 2005. Autonomous pedestrians. In SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, New York, NY, USA, 19--28. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. Still, G. 2000. Crowd Dynamics. PhD thesis, University of Warwik, UK.Google ScholarGoogle Scholar
  40. Sung, M., Gleicher, M., and Chenney, S. 2004. Scalable behaviors for crowd simulation. Computer Graphics Forum 23, 3 (Sept.), 519--528.Google ScholarGoogle ScholarCross RefCross Ref
  41. Sung, M., Kovar, L., and Gleicher, M. 2005. Fast and accurate goal-directed motion synthesis for crowds. In SCA '05: Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation, ACM Press, New York, NY, USA, 291--300. Google ScholarGoogle ScholarDigital LibraryDigital Library
  42. Tsai, R., Zhao, H., and Osher, S. 2005. Fast sweeping algorithms for a class of hamilton-jacobi equations. SIAM Journal of Numerical Analysis 42, 6.Google ScholarGoogle Scholar
  43. Tsitsiklis, J. N. 1995. Efficient algorithms for globally optimal trajectories. IEEE Transactions on Automatic Control 40, 9 (Sept.), 1528--1538.Google ScholarGoogle ScholarCross RefCross Ref
  44. Tu, X., and Terzopoulos, D. 1994. Artificial fishes: Physics, locomotion, perception, behavior. In Proceedings of SIGGRAPH 94, Computer Graphics Proceedings, Annual Conference Series, 43--50. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Continuum crowds

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 25, Issue 3
      July 2006
      742 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/1141911
      Issue’s Table of Contents

      Copyright © 2006 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 1 July 2006
      Published in tog Volume 25, Issue 3

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • article

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader