Skip to main content

Advertisement

Log in

Multiple sclerosis-associated retrovirus particles cause T lymphocyte-dependent death with brain hemorrhage in humanized SCID mice model

  • Published:
Journal of NeuroVirology Aims and scope Submit manuscript

Abstract

A retroviral element (multiple sclerosis-associated retrovirus, MSRV) defining a family of genetically inherited endogenous retroviruses (human endogenous retrovirus type W, HERV-W) has been characterized in cell cultures from patients with multiple sclerosis. Recently, MSRV retroviral particles or the envelope recombinant protein were shown to display superantigen activity in vitro, but no animal model has yet been set up for studying the pathogenicity of this retrovirus. In the present study, the pathogenicity of different sources of MSRV retroviral particles has been evaluated in a hybrid animal model: severe combined immunodeficiency (SCID) mice grafted with human lymphocytes and injected intraperitoneally with MSRV virion or mock controls. MSRV-injected mice presented with acute neurological symptoms and died within 5 to 10 days post injection. Necropsy revealed disseminated and major brain hemorrhages, whereas control animals did not show abnormalities (P < .001). In ill animals, reverse transcriptase-polymerase chain reaction (RT-PCR) analyses showed circulating MSRV RNA in serum, whereas overexpression of proinflammatory cytokines such as tumor necrosis factor (TNF)-α and interferon (IFN)-γ was evidenced in spleen RNA. Neuropathological examination confirmed that hemorrhages occurred prior to death in multifocal areas of brain parenchyma and meninges. Further series addressed the question of immune-mediated pathogenicity, by inoculating virion to SCID mice grafted with total and T lymphocyte-depleted cells in parallel: dramatic and statistically significant reduction in the number of affected mice was observed in T-depleted series (P < .001). This in vivo study suggests that MSRV retroviral particles from MS cultures have potent immunopathogenic properties mediated by T cells compatible with the previously reported superantigen activity in vitro, which appear to be mediated by an overexpression of proinflammatory cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ascherio A, Munch M (2000). Epstein-Barr virus and multiple sclerosis. Epidemiology 11: 220–224.

    Article  PubMed  CAS  Google Scholar 

  • Bernal A, Proft T, et al (1999). Superantigens in human disease. J Clin Immunol 19: 149–157.

    Article  PubMed  CAS  Google Scholar 

  • Blond JL, Beseme F, et al (1999). Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol 73: 1175–1185.

    PubMed  CAS  Google Scholar 

  • Blond JL, Lavillette D, et al (2000). An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol 74: 3321–3329.

    Article  PubMed  CAS  Google Scholar 

  • Chargui J, Dye D, et al (1995). The humanized severe combined immunodeficient mouse as a model for primary human humoral response against HIV1 peptides. J Immunol Methods 181: 91–100.

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Kappler JW, et al (1991). A superantigen encoded in the open reading frame of the 3′ long terminal repeat of mouse mammary tumour virus. Nature 350: 203–207.

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Marrack P, et al (1992). Structural analysis of a mouse mammary tumor virus superantigen. J Exp Med 175: 847–852.

    Article  PubMed  CAS  Google Scholar 

  • Contag CH, Plagemann PG (1989). Age-dependent poliomyelitis of mice: expression of endogenous retro-virus correlates with cytocidal replication of lactate dehydrogenase-elevating virus in motor neurons. J Virol 63: 4362–4369.

    PubMed  CAS  Google Scholar 

  • DeWinter LM, Low DE, et al (1999). Virulence of Streptococcus canis from canine streptococcal toxic shock syndrome and necrotizing fasciitis. Vet Microbiol 70: 95–110.

    Article  PubMed  CAS  Google Scholar 

  • Dolei A, Serra C, et al (2002). Multiple sclerosis-associated retrovirus (MSRV) in Sardinian MS patients. Neurology 58: 471–473.

    PubMed  CAS  Google Scholar 

  • Even J, Lim A, et al (1995). T-cell repertoires in healthy and diseased human tissues analysed by T-cell receptor beta-chain CDR3 size determination: evidence for oligoclonal expansions in tumours and inflammatory diseases. Res Immunol 146: 65–80.

    Article  PubMed  CAS  Google Scholar 

  • Ferrante P, Mancuso R, et al (2000). Molecular evidences for a role of HSV-1 in multiple sclerosis clinical acute attack. JNeuroVirol 6(Suppl 2): S109-S114.

    CAS  Google Scholar 

  • Garban F, Maigrhead G, et al (2000). Immunotherapy by non-myeloablaative stem cell transplantation: study of the immune reconstitution in two cases. Arguments for distinct cell subsets in skin and blood. Hematol J 1: 274–281.

    Article  PubMed  CAS  Google Scholar 

  • Gardner M (1990). Genetic resistance to a retroviral neurologic disease in wild mice. In: Retrovirus infections of the nervous system, vol 16. Oldstone M, Koprowski H (eds). Springer-Verlag: Berlin, pp 3–10.

    Google Scholar 

  • Garson JA, Tuke PW, et al (1998). Detection of virion-associated MSRV-RNA in serum of patients with multiple sclerosis. Lancet 351: 33.

    Article  PubMed  CAS  Google Scholar 

  • Jouvin-Marche E, Vigan I, et al (2001). Quantitative RT-PCR for the detection of T cell receptor transcripts in T lymphocytes populations using LightCycler. In: rapid cycle real-time PCR. methods and applications. Meuer S, Wittwer C, Nakagawara KI (eds). Springer Verlag: Heidelberg.

    Google Scholar 

  • Haahr S, Sommerlund M, et al (1991). Just another dubious virus in cells from a patient with multiple sclerosis? Lancet 337: 863–864.

    Article  PubMed  CAS  Google Scholar 

  • Kido G, Wright JL, et al (1991). Acute effects of human recombinant tumor necrosis factor-alpha on the cerebral vasculature of the rat in both normal brain and in an experimental glioma model. J Neurooncol 10: 95–109.

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Crow TJ (1999). Identification and phylogeny of novel human endogenous retroviral sequences belonging to the HERV-W family on the human X chromosome. Arch Virol 144: 2403–2413.

    Article  PubMed  CAS  Google Scholar 

  • Kim HS, Takenaka O, et al (1999). Isolation and phylogeny of endogenous retrovirus sequences belonging to the HERV-W family in primates. J Gen Virol 80: 2613–2619.

    PubMed  CAS  Google Scholar 

  • Komurian-Pradel F, Paranhos-Baccala G, et al (1999). Molecular cloning and characterization of MSRV-related sequences associated with retrovirus-like particles. Virology 260: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Koprowski H, De Freitas E, et al (1985). Multiple sclerosis and human T-cell lymphotropic retroviruses. Nature 318: 154–160.

    Article  PubMed  CAS  Google Scholar 

  • Kotzin BL, Leung DY, et al (1993). Superantigens and their potential role in human disease. Adv Immunol 54: 99–166.

    Article  PubMed  CAS  Google Scholar 

  • Krakauer T (1999). Immune response to staphylococcal superantigens. Immunol Res 20: 163–173.

    Article  PubMed  CAS  Google Scholar 

  • Kubo Y, Kakimi K, et al (1996). Possible origin of murine AIDS (MAIDS) virus: conversion of an endogenous retroviral p12gag sequence to a MAIDS-inducing sequence by frameshift mutations. J Virol 70: 6405–6409.

    PubMed  CAS  Google Scholar 

  • Lafon M, Jouvin-Marche E, et al (2002). Human viral superantigens: to be or not to be transactivated? Trends Immunol 23: 238–239.

    Article  PubMed  CAS  Google Scholar 

  • Lafon M, Lafage M, et al (1992). Evidence for a viral super-antigen in humans [see comments]. Nature 358: 507–510.

    Article  PubMed  CAS  Google Scholar 

  • Lan X, Zeng Y, et al (1994). Establishment of a human malignant T lymphoma cell line carrying retrovirus-like particles with RT activity. Biomed Environ Sci 7: 1–12.

    PubMed  CAS  Google Scholar 

  • Malcus-Vocanson C, Giraud P, et al (2001). Glial toxicity in urine and multiple sclerosis. Multiple Sclerosis 7: 383–388.

    PubMed  CAS  Google Scholar 

  • Marrack P, Kushnir E, et al (1991). A maternally inherited superantigen encoded by a mammary tumour virus [see comments]. Nature 349: 524–526.

    Article  PubMed  CAS  Google Scholar 

  • Marrack P, Winslow GM, et al (1993). The bacterial and mouse mammary tumor virus superantigens; two different families of proteins with the same functions. Immunol Rev 131: 79–92.

    Article  PubMed  CAS  Google Scholar 

  • Menard A, Amouri R, et al (1997). Gliotoxicity, reverse transcriptase activity and retroviral RNA in monocyte/macrophage culture supernatants from patients with multiple sclerosis. FEBS Lett 413: 477–485.

    Article  PubMed  CAS  Google Scholar 

  • Mirsattari SM, Johnston JB, et al (2001). Aboriginals with multiple sclerosis: HLA types and predominance of neuromyelitis optica. Neurology 56: 317–323.

    PubMed  CAS  Google Scholar 

  • Muraille E, Pajak B, et al (1999). Role and regulation of IL-12 in the in vivo response to staphylococcal enterotoxin B. Int Immunol 11: 1403–1410.

    Article  PubMed  CAS  Google Scholar 

  • Myer MS, Huchzermeyer HF, et al (1988). The possible involvement of immunosuppression caused by a lentivirus in the aetiology of jaagsiekte and pasteurellosis in sheep. Onderstepoort J Vet Res 55: 127–133.

    PubMed  CAS  Google Scholar 

  • Okamoto Y, Eda Y, et al (1998). In SCID-hu mice, passive transfer of a humanized antibody prevents infection and atrophic change of medulla in human thymic implant due to intravenous inoculation of primary HIV-1 isolate. J Immunol 160: 69–76.

    PubMed  CAS  Google Scholar 

  • Olsson P, Ryberg B, et al (1999). Retroviral RNA related to ERV9/MSRV in a human serum: a new sequence variant. AIDS Res Hum Retroviruses 15: 591–593.

    Article  PubMed  CAS  Google Scholar 

  • Ortin A, Minguijon E, et al (1998). Lack of a specific immune response against a recombinant capsid protein of Jaagsiekte sheep retrovirus in sheep and goats naturally affected by enzootic nasal tumour or sheep pulmonary adenomatosis. Vet Immunol Immunopathol 61: 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Pannetier C, Even J, and Kourilsky P (1995). T-cell repertoire diversity and clonal expansions in normal and clinical samples. Immunol Today 16: 176–181.

    Article  PubMed  CAS  Google Scholar 

  • Perron H, Geny C, et al (1989). Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles. Res Virol 140: 551–561.

    Article  PubMed  CAS  Google Scholar 

  • Perron H, Geny C, et al (1991a). Isolations of an unknown retrovirus from CSF, blood and brain from patients with multiple sclerosis. In: Current concepts in multiple sclerosis. Wiethölter H (ed). Elsevier: Amsterdam, pp 111–116.

    Google Scholar 

  • Perron H, Firouzi R, et al (1997a). Cell cultures and associated retroviruses in multiple sclerosis. Collaborative Research Group on MS. Acta Neurol Scand Suppl 169: 22–31.

    Article  PubMed  CAS  Google Scholar 

  • Perron H, Garson JA, et al (1997b). Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. The Collaborative Research Group on Multiple Sclerosis. Proc Natl Acad Sci USA 94: 7583–7588.

    Article  PubMed  CAS  Google Scholar 

  • Perron H, Jouvin-Marche E, et al (2001). Multiple sclerosis retrovirus particles and recombinant envelope trigger an abnormal immune response in vitro, by inducing polyclonal Vbeta16 T-lymphocyte activation. Virology 287: 321–332.

    Article  PubMed  CAS  Google Scholar 

  • Perron H, Lalande B, et al (1991b). Isolation of retrovirus from patients with multiple sclerosis. Lancet 337: 862–863.

    Article  PubMed  CAS  Google Scholar 

  • Perron H, Perin JP, et al (2000). Particle-associated retroviral RNA and tandem RGH/HERV-W copies on human chromosome 7q: possible components of a ‘chain-reaction’ triggered by infectious agents in multiple sclerosis? J NeuroVirol 6: S67-S75.

    PubMed  Google Scholar 

  • Perron H, Suh M, et al (1993). Herpes simplex virus ICP0 and ICP4 immediate early proteins strongly enhance expression of a retrovirus harboured by a leptomeningeal cell line from a patient with multiple sclerosis. J Gen Virol 74: 65–72.

    Article  PubMed  CAS  Google Scholar 

  • Persidsky Y (1999). Model systems for studies of leukocyte migration across the blood-brain barrier. J NeuroVirol 5: 579–590.

    Article  PubMed  CAS  Google Scholar 

  • Porta J, Carota A, et al(1993). Immunopathological changes in human cerebral malaria. Clin Neuropathol 12: 142–146.

    PubMed  CAS  Google Scholar 

  • Pullen AM, Choi Y, et al (1992). The open reading frames in the 3′ long terminal repeats of several mouse mammary tumor virus integrants encode V beta 3-specific superantigens. J Exp Med 175: 41–47.

    Article  PubMed  CAS  Google Scholar 

  • Rieger F, Amouri R, et al (1996). [Gliotoxic factor and multiple sclerosis]. C R Acad Sci III 319: 343–350.

    PubMed  CAS  Google Scholar 

  • Rudge P (1991). Does a retrovirally encoded superantigen cause multiple sclerosis? J Neurol Neurosurg Psychiatry 54: 853–855.

    Article  PubMed  CAS  Google Scholar 

  • Sanhadji K, Grave L, et al (2000). Gene transfer of anti-gp41 antibody and CD4 immunoadhesin strongly reduces the HIV-1 load in humanized severe combined immunodeficient mice. AIDS 14: 2813–2822.

    Article  PubMed  CAS  Google Scholar 

  • Scaramuzzino DA, Mcniff JM, et al (2000). Humanized in vivo model for streptococcal impetigo. Infect Immun 68: 2880–2887.

    Article  PubMed  CAS  Google Scholar 

  • Schlievert PM, Jablonski LM, et al (2000). Pyrogenic toxin superantigen site specificity in toxic shock syndrome and food poisoning in animals. Infect Immun 68: 3630–3634.

    Article  PubMed  CAS  Google Scholar 

  • Serra C, Sotgiu S, et al (2001). Multiple sclerosis and multiple sclerosis-associated retrovirus in Sardinia. Neurol Sci 22: 171–173.

    Article  PubMed  CAS  Google Scholar 

  • Soldan S, Berti R, et al(1997). Association of human herpes virus 6 (HHV-6) with multiple sclerosis: increased IgM response to HHV-6 early antigen and detection of serum HHV-6 DNA. Nat Med 3: 1394–1397.

    Article  PubMed  CAS  Google Scholar 

  • Sun R, Grogan E, et al (1995). Transmissible retrovirus in Epstein-Barr Virus-producer B95-8 cells. Virology 209: 374–383.

    Article  PubMed  CAS  Google Scholar 

  • Turner G (1997). Cerebral malaria. Brain Pathol 7: 569–582.

    Article  PubMed  CAS  Google Scholar 

  • Vanzieleghem B, Gilles JG, et al (2000). Humanized severe combined immunodeficient mice as a potential model for the study of tolerance to factor VIII. Thromb Haemost 83: 833–839.

    PubMed  CAS  Google Scholar 

  • Voisset C, Blancher A, et al (1999). Phylogeny of a novel family of human endogenous retrovirus sequences, HERV-W, in humans and other primates. AIDS Res Hum Retroviruses 15: 1529–1533.

    Article  PubMed  CAS  Google Scholar 

  • Voisset C, Bouton O, et al (2000). Chromosomal distribution and coding capacity of the human endogenous retrovirus HERV-W family. AIDS Res Hum Retroviruses 16: 731–740.

    Article  PubMed  CAS  Google Scholar 

  • Wandinger K, Jabs W, et al (2000). Association between clinical disease activity and Epstein-Barr virus reactivation in MS [see comments]. Neurology 55: 178–184.

    PubMed  CAS  Google Scholar 

  • White J, Herman A, et al (1989). The V beta-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell 56: 27–35.

    Article  PubMed  CAS  Google Scholar 

  • Wilborn F, Schmidt CA, et al (1994). A potential role for human herpesvirus type 6 in nervous system disease. J Neuroimmunol 49: 213–214.

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Wrona TJ, et al (1996). Exogenous mouse mammary tumor virus (MMTV) infection induces endogenous MMTV sag expression. Virology 215: 113–123.

    Article  PubMed  CAS  Google Scholar 

  • Yi JM, Kim HM, et al (2002). Molecular cloning and phylogenetic analysis of new human endogenous retrovirus HERV-W family in cancer cells. Curr Microbiol 44: 216–220.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Perron.

Additional information

This study was supported by BioMérieux SA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Firouzi, R., Rolland, A., Michel, M. et al. Multiple sclerosis-associated retrovirus particles cause T lymphocyte-dependent death with brain hemorrhage in humanized SCID mice model. Journal of NeuroVirology 9, 79–93 (2003). https://doi.org/10.1080/13550280390173328

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1080/13550280390173328

Keywords

Navigation