Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cytogenetics and Molecular Genetics

MEF2C is activated by multiple mechanisms in a subset of T-acute lymphoblastic leukemia cell lines

Abstract

In T-cell acute lymphoblastic leukemia (T-ALL) the cardiac homeobox gene NKX2-5 (at 5q35) is variously deregulated by regulatory elements coordinating with BCL11B (at 14q32.2), or the T-cell receptor gene TRD (at 14q11.2), respectively. NKX2-5 is normally expressed in developing spleen and heart, regulating fundamental processes, including differentiation and survival. In this study we investigated whether NKX2-5 expression in T-ALL cell lines reactivates these embryonal pathways contributing to leukemogenesis. Among 18 known targets analyzed, we identified three genes regulated by NKX2-5 in T-ALL cells, including myocyte enhancer factor 2C (MEF2C). Knockdown and overexpression assays confirmed MEF2C activation by NKX2-5 at both the RNA and protein levels. Direct interactions between NKX2-5 and GATA3 as indicated by co-immunoprecipitation data may contribute to MEF2C regulation. In T-ALL cell lines LOUCY and RPMI-8402 MEF2C expression was correlated with a 5q14 deletion, encompassing noncoding proximal gene regions. Fusion constructs with green fluorescent protein permitted subcellular detection of MEF2C protein in nuclear speckles interpretable as repression complexes. MEF2C consistently inhibits expression of NR4A1/NUR77, which regulates apoptosis via BCL2 transformation. Taken together, our data identify distinct mechanisms underlying ectopic MEF2C expression in T-ALL, either as a downstream target of NKX2-5, or via chromosomal aberrations deleting proximal gene regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Duboule D . Guidebook to the Homeobox Genes. Oxford University Press: Oxford, 1994, pp 13–23.

    Google Scholar 

  2. Cillo C, Cantile M, Faiella A, Boncinelli E . Homeobox genes in normal and malignant cells. J Cell Physiol 2001; 188: 161–169.

    Article  CAS  Google Scholar 

  3. Abate-Shen C . Deregulated homeobox gene expression in cancer: cause or consequence? Nat Rev Cancer 2002; 2: 777–785.

    Article  CAS  Google Scholar 

  4. Holland PW . Beyond the Hox: how widespread is homeobox gene clustering? J Anat 2001; 199: 13–23.

    Article  CAS  Google Scholar 

  5. Garcia-Fernandez J . The genesis and evolution of homeobox gene clusters. Nat Rev Genet 2005; 6: 881–892.

    Article  CAS  Google Scholar 

  6. Soulier J, Clappier E, Cayuela JM, Regnault A, Garcia-Peydro M, Dombret H et al. HOXA genes are included in genetic and biologic networks defining human acute T-cell leukemia (T-ALL). Blood 2005; 106: 274–286.

    Article  CAS  Google Scholar 

  7. Nagel S, Kaufmann M, Drexler HG, MacLeod RA . The cardiac homeobox gene NKX2-5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2). Cancer Res 2003; 63: 5329–5334.

    CAS  PubMed  Google Scholar 

  8. Speleman F, Cauwelier B, Dastugue N, Cools J, Verhasselt B, Poppe B et al. A new recurrent inversion, inv(7)(p15q34), leads to transcriptional activation of HOXA10 and HOXA11 in a subset of T-cell acute lymphoblastic leukemias. Leukemia 2005; 19: 358–366.

    Article  CAS  Google Scholar 

  9. Hatano M, Roberts CW, Minden M, Crist WM, Korsmeyer SJ . Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science 1991; 253: 79–82.

    Article  CAS  Google Scholar 

  10. Bernard OA, Busson-LeConiat M, Ballerini P, Mauchauffe M, Della Valle V, Monni R et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 2001; 15: 1495–1504.

    Article  CAS  Google Scholar 

  11. De Keersmaecker K, Marynen P, Cools J . Genetic insights in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica 2005; 90: 1116–1127.

    CAS  PubMed  Google Scholar 

  12. Graux C, Cools J, Michaux L, Vandenberghe P, Hagemeijer A . Cytogenetics and molecular genetics of T-cell acute lymphoblastic leukemia: from thymocyte to lymphoblast. Leukemia 2006; 20: 1496–1510.

    Article  CAS  Google Scholar 

  13. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 2002; 1: 75–87.

    Article  CAS  Google Scholar 

  14. Ballerini P, Blaise A, Busson-Le Coniat M, Su XY, Zucman-Rossi J, Adam M et al. HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood 2002; 100: 991–997.

    Article  CAS  Google Scholar 

  15. Watt PM, Kumar R, Kees UR . Promoter demethylation accompanies reactivation of the HOX11 proto-oncogene in leukemia. Genes Chromosomes Cancer 2000; 29: 371–377.

    Article  CAS  Google Scholar 

  16. Przybylski GK, Dik WA, Grabarczyk P, Wanzeck J, Chudobska P, Jankowski K et al. The effect of a novel recombination between the homeobox gene NKX2-5 and the TRD locus in T-cell acute lymphoblastic leukemia on activation of the NKX2-5 gene. Haematologica 2006; 91: 317–321.

    CAS  PubMed  Google Scholar 

  17. MacLeod RAF, Nagel S, Kaufmann M, Janssen JW, Drexler HG . Activation of HOX11L2 by juxtaposition with 3′-BCL11B in an acute lymphoblastic leukemia cell line (HPB-ALL) with t(5;14)(q35;q32.2). Genes Chromosomes Cancer 2003; 37: 84–91.

    Article  CAS  Google Scholar 

  18. Hansen-Hagge TE, Schafer M, Kiyoi H, Morris SW, Whitlock JA, Koch P et al. Disruption of the RanBP17/Hox11L2 region by recombination with the TCRdelta locus in acute lymphoblastic leukemias with t(5;14)(q34;q11). Leukemia 2002; 16: 2205–2212.

    Article  CAS  Google Scholar 

  19. Kennedy MA, Gonzalez-Sarmiento R, Kees UR, Lampert F, Dear N, Boehm T et al. HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc Natl Acad Sci USA 1991; 88: 8900–8904.

    Article  CAS  Google Scholar 

  20. Nagel S, Scherr M, Kel A, Hornischer K, Crawford GE, Kaufmann M et al. Activation of TLX3 and NKX2-5 in t(5;14)(q35;q32) T-cell acute lymphoblastic leukemia by remote 3′-BCL11B enhancers and coregulation by PU.1 and HMGA1. Cancer Res 2007; 67: 1461–1471.

    Article  CAS  Google Scholar 

  21. Lints TJ, Parsons LM, Hartley L, Lyons I, Harvey RP . Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 1993; 119: 419–431.

    CAS  Google Scholar 

  22. Du Y, Spence SE, Jenkins NA, Copeland NG . Cooperating cancer-gene identification through oncogenic-retrovirus-induced insertional mutagenesis. Blood 2005; 106: 2498–2505.

    Article  CAS  Google Scholar 

  23. Drexler HG . Guide to Leukemia-Lymphoma Cell Lines. Braunschweig, 2005, (compact disc).

    Google Scholar 

  24. MacLeod RAF, Kaufmann M, Drexler HG . Cytogenetic harvesting of commonly used tumor cell lines. Nat Protoc 2007; 2: 372–382.

    Article  CAS  Google Scholar 

  25. MacLeod RAF, Drexler HG . Cytogenetic analysis of cell lines. Methods Mol Biol 2005; 290: 51–70.

    CAS  PubMed  Google Scholar 

  26. Quentmeier H, Zaborski M, Drexler HG . Effects of thrombopoietin, interleukin-3 and the kinase inhibitor K-252a on growth and polyploidization of the megakaryocytic cell line M-07e. Leukemia 1998; 12: 1603–1611.

    Article  CAS  Google Scholar 

  27. Nagel S, Burek C, Venturini L, Scherr M, Quentmeier H, Meyer C et al. Comprehensive analysis of homeobox genes in Hodgkin lymphoma cell lines identifies dysregulated expression of HOXB9 mediated via ERK5 signaling and BMI1. Blood 2007; 109: 3015–3023.

    CAS  PubMed  Google Scholar 

  28. Nagel S, Scherr M, Quentmeier H, Kaufmann M, Zaborski M, Drexler HG et al. HLXB9 activates IL6 in Hodgkin lymphoma cell lines and is regulated by PI3K signalling involving E2F3. Leukemia 2005; 19: 841–846.

    Article  CAS  Google Scholar 

  29. Liu H, Harris TM, Kim HH, Childs G . Cardiac myocyte differentiation: the Nkx2.5 and Cripto target genes in P19 clone 6 cells. Funct Integr Genomics 2005; 5: 218–239.

    Article  CAS  Google Scholar 

  30. Ryan KM, Hendren JD, Helander LA, Cripps RM . The NK homeodomain transcription factor Tinman is a direct activator of seven-up in the Drosophila dorsal vessel. Dev Biol 2007; 302: 694–702.

    Article  CAS  Google Scholar 

  31. Guo L, Lynch J, Nakamura K, Fliegel L, Kasahara H, Izumo S et al. COUP-TF1 antagonizes Nkx2.5-mediated activation of the calreticulin gene during cardiac development. J Biol Chem 2001; 276: 2797–2801.

    Article  CAS  Google Scholar 

  32. Jay PY, Rozhitskaya O, Tarnavski O, Sherwood MC, Dorfman AL, Lu Y et al. Haploinsufficiency of the cardiac transcription factor Nkx2-5 variably affects the expression of putative target genes. FASEB J 2005; 19: 1495–1497.

    Article  CAS  Google Scholar 

  33. von Both I, Silvestri C, Erdemir T, Lickert H, Walls JR, Henkelman RM et al. Foxh1 is essential for development of the anterior heart field. Dev Cell 2004; 7: 331–345.

    Article  CAS  Google Scholar 

  34. Olson EN . Gene regulatory networks in the evolution and development of the heart. Science 2006; 313: 1922–1927.

    Article  CAS  Google Scholar 

  35. Gajewski K, Kim Y, Lee YM, Olson EN, Schulz RA . D-mef2 is a target for Tinman activation during Drosophila heart development. EMBO J 1997; 16: 515–522.

    Article  CAS  Google Scholar 

  36. Gajewski K, Zhang Q, Choi CY, Fossett N, Dang A, Kim YH et al. Pannier is a transcriptional target and partner of Tinman during Drosophila cardiogenesis. Dev Biol 2001; 233: 425–436.

    Article  CAS  Google Scholar 

  37. Skerjanc IS, Petropoulos H, Ridgeway AG, Wilton S . Myocyte enhancer factor 2C and Nkx2-5 up-regulate each other's expression and initiate cardiomyogenesis in P19 cells. J Biol Chem 1998; 273: 34904–34910.

    Article  CAS  Google Scholar 

  38. Ganga M, Espinoza HM, Cox CJ, Morton L, Hjalt TA, Lee Y et al. PITX2 isoform-specific regulation of atrial natriuretic factor expression: synergism and repression with Nkx2.5. J Biol Chem 2003; 278: 22437–22445.

    Article  CAS  Google Scholar 

  39. Han Z, Olson EN . Hand is a direct target of Tinman and GATA factors during Drosophila cardiogenesis and hematopoiesis. Development 2005; 132: 3525–3536.

    Article  CAS  Google Scholar 

  40. Choi CY, Lee YM, Kim YH, Park T, Jeon BH, Schulz RA et al. The homeodomain transcription factor NK-4 acts as either a transcriptional activator or repressor and interacts with the p300 coactivator and the Groucho corepressor. J Biol Chem 1999; 274: 31543–31552.

    Article  CAS  Google Scholar 

  41. Strizzi L, Bianco C, Normanno N, Salomon D . Cripto-1: a multifunctional modulator during embryogenesis and oncogenesis. Oncogene 2005; 24: 5731–5741.

    Article  CAS  Google Scholar 

  42. Kieusseian A, Chagraoui J, Kerdudo C, Mangeot PE, Gage PJ, Navarro N et al. Expression of Pitx2 in stromal cells is required for normal hematopoiesis. Blood 2006; 107: 492–500.

    Article  CAS  Google Scholar 

  43. Swanson BJ, Jack HM, Lyons GE . Characterization of myocyte enhancer factor 2 (MEF2) expression in B and T cells: MEF2C is a B cell-restricted transcription factor in lymphocytes. Mol Immunol 1998; 35: 445–458.

    Article  CAS  Google Scholar 

  44. Yuki Y, Imoto I, Imaizumi M, Hibi S, Kaneko Y, Amagasa T et al. Identification of a novel fusion gene in a pre-B acute lymphoblastic leukemia with t(1;19)(q23;p13). Cancer Sci 2004; 95: 503–507.

    Article  CAS  Google Scholar 

  45. Prima V, Gore L, Caires A, Boomer T, Yoshinari M, Imaizumi M et al. Cloning and functional characterization of MEF2D/DAZAP1 and DAZAP1/MEF2D fusion proteins created by a variant t(1;19)(q23;p13.3) in acute lymphoblastic leukemia. Leukemia 2005; 19: 806–813.

    Article  CAS  Google Scholar 

  46. Dodou E, Xu SM, Black BL . mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo. Mech Dev 2003; 120: 1021–1032.

    Article  CAS  Google Scholar 

  47. De Val S, Anderson JP, Heidt AB, Khiem D, Xu SM, Black BL . Mef2c is activated directly by Ets transcription factors through an evolutionarily conserved endothelial cell-specific enhancer. Dev Biol 2004; 275: 424–434.

    Article  CAS  Google Scholar 

  48. Dodou E, Verzi MP, Anderson JP, Xu SM, Black BL . Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 2004; 131: 3931–3942.

    Article  CAS  Google Scholar 

  49. Patient RK, McGhee JD . The GATA family (vertebrates and invertebrates). Curr Opin Genet Dev 2002; 12: 416–422.

    Article  CAS  Google Scholar 

  50. Durocher D, Charron F, Warren R, Schwartz RJ, Nemer M . The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J 1997; 16: 5687–5696.

    Article  CAS  Google Scholar 

  51. Oosterwegel M, Timmerman J, Leiden J, Clevers H . Expression of GATA-3 during lymphocyte differentiation and mouse embryogenesis. Dev Immunol 1992; 3: 1–11.

    Article  CAS  Google Scholar 

  52. Borghi S, Molinari S, Razzini G, Parise F, Battini R, Ferrari S . The nuclear localization domain of the MEF2 family of transcription factors shows member-specific features and mediates the nuclear import of histone deacetylase 4. J Cell Sci 2001; 114: 4477–4483.

    CAS  PubMed  Google Scholar 

  53. Wu X, Li H, Park EJ, Chen JD . SMRTE inhibits MEF2C transcriptional activation by targeting HDAC4 and 5 to nuclear domains. J Biol Chem 2001; 276: 24177–24185.

    Article  CAS  Google Scholar 

  54. Verzi MP, Agarwal P, Brown C, McCulley DJ, Schwarz JJ, Black BL . The transcription factor MEF2C is required for craniofacial development. Dev Cell 2007; 12: 645–652.

    Article  CAS  Google Scholar 

  55. He YW . Orphan nuclear receptors in T lymphocyte development. J Leukoc Biol 2002; 72: 440–446.

    CAS  PubMed  Google Scholar 

  56. Starr TK, Jameson SC, Hogquist KA . Positive and negative selection of T cells. Annu Rev Immunol 2003; 21: 139–176.

    Article  CAS  Google Scholar 

  57. Youn HD, Sun L, Prywes R, Liu JO . Apoptosis of T cells mediated by Ca2+-induced release of the transcription factor MEF2. Science 1999; 286: 790–793.

    Article  CAS  Google Scholar 

  58. Youn HD, Liu JO . Cabin1 represses MEF2-dependent Nur77 expression and T cell apoptosis by controlling association of histone deacetylases and acetylases with MEF2. Immunity 2000; 13: 85–94.

    Article  CAS  Google Scholar 

  59. Youn HD, Chatila TA, Liu JO . Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. EMBO J 2000; 19: 4323–4331.

    Article  CAS  Google Scholar 

  60. Winoto A, Littman DR . Nuclear hormone receptors in T lymphocytes. Cell 2002; 109: 57–66.

    Article  Google Scholar 

  61. Hoffmann K, Dixon DN, Greene WK, Ford J, Taplin R, Kees UR . A microarray model system identifies potential new target genes of the proto-oncogene HOX11. Genes Chromosomes Cancer 2004; 41: 309–320.

    Article  CAS  Google Scholar 

  62. Gregoire S, Xiao L, Nie J, Zhang X, Xu M, Li J et al. Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2. Mol Cell Biol 2007; 27: 1280–1295.

    Article  CAS  Google Scholar 

  63. Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F et al. Regulation of the MEF2 family of transcription factors by p38. Mol Cell Biol 1999; 19: 21–30.

    Article  CAS  Google Scholar 

  64. Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 2004; 116: 527–540.

    Article  CAS  Google Scholar 

  65. Luciano F, Krajewska M, Ortiz-Rubio P, Krajewski S, Zhai D, Faustin B et al. Nur77 converts phenotype of Bcl-B, an antiapoptotic protein expressed in plasma cells and myeloma. Blood 2007; 109: 3849–3855.

    Article  CAS  Google Scholar 

  66. Real PJ, Cao Y, Wang R, Nikolovska-Coleska Z, Sanz-Ortiz J, Wang S et al. Breast cancer cells can evade apoptosis-mediated selective killing by a novel small molecule inhibitor of Bcl-2. Cancer Res 2004; 64: 7947–7953.

    Article  CAS  Google Scholar 

  67. Linette GP, Grusby MJ, Hedrick SM, Hansen TH, Glimcher LH, Korsmeyer SJ . Bcl-2 is upregulated at the CD4+ CD8+ stage during positive selection and promotes thymocyte differentiation at several control points. Immunity 1994; 1: 197–205.

    Article  CAS  Google Scholar 

  68. Williams O, Brady HJ . The role of molecules that mediate apoptosis in T-cell selection. Trends Immunol 2001; 22: 107–111.

    Article  CAS  Google Scholar 

  69. Krivtsov AV, Twomey D, Feng Z, Stubbs MC, Wang Y, Faber J et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 2006; 442: 818–822.

    Article  CAS  Google Scholar 

  70. Mullican SE, Zhang S, Konopleva M, Ruvolo V, Andreeff M, Milbrandt J et al. Abrogation of nuclear receptors Nr4a3 andNr4a1 leads to development of acute myeloid leukemia. Nat Med 2007; 13: 730–735.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Nagel.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagel, S., Meyer, C., Quentmeier, H. et al. MEF2C is activated by multiple mechanisms in a subset of T-acute lymphoblastic leukemia cell lines. Leukemia 22, 600–607 (2008). https://doi.org/10.1038/sj.leu.2405067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2405067

Keywords

This article is cited by

Search

Quick links