Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial regulation of organismal energy homeostasis

Abstract

The gut microbiome has emerged as a key regulator of host metabolism. Here we review the various mechanisms through which the gut microbiome influences the energy metabolism of its host, highlighting the complex interactions between gut microbes, their metabolites and host cells. Among the most important bacterial metabolites are short-chain fatty acids, which serve as a direct energy source for host cells, stimulate the production of gut hormones and act in the brain to regulate food intake. Other microbial metabolites affect systemic energy expenditure by influencing thermogenesis and adipose tissue browning. Both direct and indirect mechanisms of action are known for specific metabolites, such as bile acids, branched chain amino acids, indole propionic acid and endocannabinoids. We also discuss the roles of specific bacteria in the production of specific metabolites and explore how external factors, such as antibiotics and exercise, affect the microbiome and thereby energy homeostasis. Collectively, we present a large body of evidence supporting the concept that gut microbiota-based therapies can be used to modulate host metabolism, and we expect to see such approaches moving from bench to bedside in the near future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Energy harvest and metabolism.
Fig. 2: The gut microbiota modulates energy intake via the gut–brain axis.
Fig. 3: Crosstalk between the gut microbiota and the host and its regulation of metabolism.
Fig. 4: The gut microbiota and its derived metabolites influence host energy homeostasis.

Similar content being viewed by others

References

  1. Cani, P. D. Human gut microbiome: hopes, threats and promises. Gut 67, 1716–1725 (2018).

    Article  PubMed  Google Scholar 

  2. Barr, J. J. A bacteriophages journey through the human body. Immunol. Rev. 279, 106–122 (2017).

    CAS  PubMed  Google Scholar 

  3. Forde, A. & Hill, C. Phages of life—the path to pharma. Br. J. Pharmacol. 175, 412–418 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).

    CAS  PubMed  Google Scholar 

  5. Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    CAS  PubMed  Google Scholar 

  6. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    PubMed  Google Scholar 

  8. Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).

    CAS  PubMed  Google Scholar 

  9. Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut 65, 426–436 (2016).

    CAS  PubMed  Google Scholar 

  10. Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551, 507–511 (2017).

    CAS  PubMed  Google Scholar 

  11. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Google Scholar 

  12. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101, 15718–15723 (2004).

    PubMed  PubMed Central  Google Scholar 

  13. Wichmann, A. et al. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe 14, 582–590 (2013).

    CAS  PubMed  Google Scholar 

  14. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    CAS  PubMed  Google Scholar 

  15. Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).

    PubMed  PubMed Central  Google Scholar 

  16. Dewulf, E. M. et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62, 1112–1121 (2013).

    CAS  PubMed  Google Scholar 

  17. Salazar, N. et al. Inulin-type fructans modulate intestinal Bifidobacterium species populations and decrease fecal short-chain fatty acids in obese women. Clin. Nutr. 34, 501–507 (2015).

    CAS  PubMed  Google Scholar 

  18. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    PubMed  Google Scholar 

  19. Brahe, L. K., Astrup, A. & Larsen, L. H. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes. Rev. 14, 950–959 (2013).

    CAS  PubMed  Google Scholar 

  20. Neis, E. P. et al. Distal versus proximal intestinal short-chain fatty acid release in man. Gut https://doi.org/10.1136/gutjnl-2018-316161 (2018).

  21. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut–brain neural circuits. Cell 156, 84–96 (2014).

    PubMed  Google Scholar 

  22. Rémésy, C., Demigné, C. & Chartier, F. Origin and utilization of volatile fatty acids in the rat. Reprod. Nutr. Dev. 20, 1339–1349 (1980).

    PubMed  Google Scholar 

  23. Singh, V. et al. Microbiota-dependent hepatic lipogenesis mediated by stearoyl CoA desaturase 1 (SCD1) promotes metabolic syndrome in TLR5-deficient mice. Cell Metab. 22, 983–996 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Schwarzer, M. et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351, 854–857 (2016).

    CAS  PubMed  Google Scholar 

  25. Smythe, P. M. Changes in intestinal bacterial flora and role of infection in kwashiorkor. Lancet 2, 724–727 (1958).

    CAS  PubMed  Google Scholar 

  26. Gupta, S. S. et al. Metagenome of the gut of a malnourished child. Gut Pathog. 3, 7 (2011).

    PubMed  PubMed Central  Google Scholar 

  27. Monira, S. et al. Gut microbiota of healthy and malnourished children in bangladesh. Front. Microbiol. 2, 228 (2011).

    PubMed  PubMed Central  Google Scholar 

  28. Ghosh, T. S. et al. Gut microbiomes of Indian children of varying nutritional status. PLoS One 9, e95547 (2014).

    PubMed  PubMed Central  Google Scholar 

  29. Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417–421 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl. Acad. Sci. USA 107, 14691–14696 (2010).

    PubMed  PubMed Central  Google Scholar 

  31. Byndloss, M. X. et al. Microbiota-activated PPAR-γ signaling inhibits dysbiotic Enterobacteriaceae expansion. Science 357, 570–575 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cani, P. D. Gut cell metabolism shapes the microbiome. Science 357, 548–549 (2017).

    CAS  PubMed  Google Scholar 

  33. Waterson, M. J. & Horvath, T. L. Neuronal regulation of energy homeostasis: beyond the hypothalamus and feeding. Cell Metab. 22, 962–970 (2015).

    CAS  PubMed  Google Scholar 

  34. Williams, K. W. & Elmquist, J. K. From neuroanatomy to behavior: central integration of peripheral signals regulating feeding behavior. Nat. Neurosci. 15, 1350–1355 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Suzuki, K., Jayasena, C. N. & Bloom, S. R. Obesity and appetite control. Exp. Diabetes Res. 2012, 824305 (2012).

    PubMed  PubMed Central  Google Scholar 

  36. Cani, P. D., Dewever, C. & Delzenne, N. M. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br. J. Nutr. 92, 521–526 (2004).

    CAS  PubMed  Google Scholar 

  37. Delzenne, N. M., Cani, P. D., Daubioul, C. & Neyrinck, A. M. Impact of inulin and oligofructose on gastrointestinal peptides. Br. J. Nutr. 93 (Suppl 1), S157–S161 (2005).

  38. Cani, P. D., Neyrinck, A. M., Maton, N. & Delzenne, N. M. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like Peptide-1. Obes. Res. 13, 1000–1007 (2005).

    CAS  PubMed  Google Scholar 

  39. Cani, P. D., Joly, E., Horsmans, Y. & Delzenne, N. M. Oligofructose promotes satiety in healthy human: a pilot study. Eur. J. Clin. Nutr. 60, 567–572 (2006).

    CAS  PubMed  Google Scholar 

  40. Cani, P. D., Hoste, S., Guiot, Y. & Delzenne, N. M. Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Br. J. Nutr. 98, 32–37 (2007).

    CAS  PubMed  Google Scholar 

  41. Karaki, S. et al. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 324, 353–360 (2006).

    CAS  PubMed  Google Scholar 

  42. Karaki, S. et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J. Mol. Histol. 39, 135–142 (2008).

    CAS  PubMed  Google Scholar 

  43. Tazoe, H. et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 30, 149–156 (2009).

    CAS  PubMed  Google Scholar 

  44. Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61, 364–371 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Psichas, A. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. (Lond.) 39, 424–429 (2015).

    CAS  Google Scholar 

  46. Ronveaux, C. C., Tomé, D. & Raybould, H. E. Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling. J. Nutr. 145, 672–680 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Hagemann, D. et al. Glucagon-like peptide 1 (GLP-1) suppresses ghrelin levels in humans via increased insulin secretion. Regul. Pept. 143, 64–68 (2007).

    CAS  PubMed  Google Scholar 

  48. Murphy, K. G. & Bloom, S. R. Gut hormones and the regulation of energy homeostasis. Nature 444, 854–859 (2006).

    CAS  PubMed  Google Scholar 

  49. Batterham, R. L. et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature 418, 650–654 (2002).

    CAS  PubMed  Google Scholar 

  50. Kanoski, S. E., Hayes, M. R. & Skibicka, K. P. GLP-1 and weight loss: unraveling the diverse neural circuitry. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310, R885–R895 (2016).

    PubMed  PubMed Central  Google Scholar 

  51. Cani, P. D. & Knauf, C. How gut microbes talk to organs: the role of endocrine and nervous routes. Mol. Metab. 5, 743–752 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rastelli, M., Knauf, C. & Cani, P. D. Gut microbes and health: a focus on the mechanisms linking microbes, obesity, and related disorders. Obes. (Silver Spring) 26, 792–800 (2018).

    Google Scholar 

  53. Lin, H. V. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 7, e35240 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64, 1744–1754 (2015).

    CAS  PubMed  Google Scholar 

  55. Li, Z. et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut 67, 1269–1279 (2018).

    PubMed  Google Scholar 

  56. Goswami, C., Iwasaki, Y. & Yada, T. Short-chain fatty acids suppress food intake by activating vagal afferent neurons. J. Nutr. Biochem. 57, 130–135 (2018).

    CAS  PubMed  Google Scholar 

  57. Frost, G. et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).

    CAS  PubMed  Google Scholar 

  58. Tennoune, N. et al. Bacterial ClpB heat-shock protein, an antigen-mimetic of the anorexigenic peptide α-MSH, at the origin of eating disorders. Transl. Psychiatry 4, e458 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Breton, J. et al. Gut commensal E. coli proteins activate host satiety pathways following nutrient-induced bacterial growth. Cell Metab. 23, 324–334 (2016).

    CAS  PubMed  Google Scholar 

  60. Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res. 1693 (Pt B), 128–133 (2018).

  61. Yano, J. M. et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161, 264–276 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Clarke, G. et al. The microbiome–gut–brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 18, 666–673 (2013).

    CAS  PubMed  Google Scholar 

  63. Kelly, J. R. et al. Transferring the blues: depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 82, 109–118 (2016).

    PubMed  Google Scholar 

  64. Zheng, P. et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry 21, 786–796 (2016).

    CAS  PubMed  Google Scholar 

  65. De Palma, G. et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci. Transl. Med. 9, eaaf6397 (2017).

    PubMed  Google Scholar 

  66. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease. Cell 167, 1469–1480.e12 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Minter, M. R. et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci. Rep. 6, 30028 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Berer, K. et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc. Natl. Acad. Sci. USA 114, 10719–10724 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451–1463 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Castro, D. C., Cole, S. L. & Berridge, K. C. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front. Syst. Neurosci. 9, 90 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Ding, L. & Zhang, J. Glucagon-like peptide-1 activates endothelial nitric oxide synthase in human umbilical vein endothelial cells. Acta Pharmacol. Sin. 33, 75–81 (2012).

    CAS  PubMed  Google Scholar 

  72. Rotondo, A., Amato, A., Lentini, L., Baldassano, S. & Mulè, F. Glucagon-like peptide-1 relaxes gastric antrum through nitric oxide in mice. Peptides 32, 60–64 (2011).

    CAS  PubMed  Google Scholar 

  73. Grasset, E. et al. A specific gut microbiota dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric no-dependent and gut–brain axis mechanism. Cell Metab. 25, 1075–1090.e75 (2017).

    CAS  PubMed  Google Scholar 

  74. Catry, E. et al. Targeting the gut microbiota with inulin-type fructans: preclinical demonstration of a novel approach in the management of endothelial dysfunction. Gut 67, 271–283 (2018).

    CAS  PubMed  Google Scholar 

  75. Brandl, K., Kumar, V. & Eckmann, L. Gut–liver axis at the frontier of host-microbial interactions. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G413–G419 (2017).

    PubMed  PubMed Central  Google Scholar 

  76. Tilg, H., Cani, P. D. & Mayer, E. A. Gut microbiome and liver diseases. Gut 65, 2035–2044 (2016).

    CAS  PubMed  Google Scholar 

  77. Schramm, C. Bile acids, the microbiome, immunity, and liver tumors. N. Engl. J. Med. 379, 888–890 (2018).

    PubMed  Google Scholar 

  78. Chevre, R., Silvestre-Roig, C. & Soehnlein, O. Nutritional modulation of innate immunity: the fat–bile–gut connection. Trends Emdocrinol. Metab. 29, 686–698 (2018).

    CAS  Google Scholar 

  79. Pathak, P. et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 68, 1574–1588 (2018).

    CAS  PubMed  Google Scholar 

  80. Ma, C. et al. Gut microbiome–mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360, eaan5931 (2018).

    PubMed  PubMed Central  Google Scholar 

  81. Fiorucci, S., Mencarelli, A., Palladino, G. & Cipriani, S. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol. Sci. 30, 570–580 (2009).

    CAS  PubMed  Google Scholar 

  82. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    CAS  PubMed  Google Scholar 

  83. Anhê, F. F. et al. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut https://doi.org/10.1136/gutjnl-2017-315565 (2018).

  84. Ziętak, M., Chabowska-Kita, A. & Kozak, L. P. Brown fat thermogenesis: Stability of developmental programming and transient effects of temperature and gut microbiota in adults. Biochimie 134, 93–98 (2017).

    PubMed  Google Scholar 

  85. Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).

    CAS  PubMed  Google Scholar 

  86. Ziętak, M. et al. Altered microbiota contributes to reduced diet-induced obesity upon cold exposure. Cell Metab. 23, 1216–1223 (2016).

    PubMed  PubMed Central  Google Scholar 

  87. Zhang, X. Y. et al. Huddling remodels gut microbiota to reduce energy requirements in a small mammal species during cold exposure. Microbiome 6, 103 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Derrien, M., Collado, M. C., Ben-Amor, K., Salminen, S. & de Vos, W. M. The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl. Environ. Microbiol. 74, 1646–1648 (2008).

    CAS  PubMed  Google Scholar 

  89. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110, 9066–9071 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Schneeberger, M. et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci. Rep. 5, 16643 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Cani, P. D. & de Vos, W. M. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front. Microbiol. 8, 1765 (2017).

    PubMed  PubMed Central  Google Scholar 

  92. Plovier, H. et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23, 107–113 (2017).

    CAS  PubMed  Google Scholar 

  93. Pierre, J. F. et al. Activation of bile acid signaling improves metabolic phenotypes in high-fat diet-induced obese mice. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G286–G304 (2016).

    PubMed  PubMed Central  Google Scholar 

  94. Gao, X. et al. Polyphenol- and caffeine-rich postfermented pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice. Infect. Immun. 86, e00601–e00617 (2017).

    PubMed  PubMed Central  Google Scholar 

  95. Liu, J. et al. Gypenosides reduced the risk of overweight and insulin resistance in C57BL/6J mice through modulating adipose thermogenesis and gut microbiota. J. Agric. Food Chem. 65, 9237–9246 1 (2017).

    CAS  PubMed  Google Scholar 

  96. Worthmann, A. et al. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat. Med. 23, 839–849 (2017).

    CAS  PubMed  Google Scholar 

  97. Kim, K. H. et al. Intermittent fasting promotes adipose thermogenesis and metabolic homeostasis via VEGF-mediated alternative activation of macrophage. Cell Res. 27, 1309–1326 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Mattson, M. P., Longo, V. D. & Harvie, M. Impact of intermittent fasting on health and disease processes. Ageing Res. Rev. 39, 46–58 (2017).

    PubMed  Google Scholar 

  99. Anton, S. D. et al. Flipping the metabolic switch: understanding and applying the health benefits of fasting. Obes. (Silver Spring) 26, 254–268 (2018).

    Google Scholar 

  100. Li, G. et al. Intermittent fasting promotes white adipose browning and decreases obesity by shaping the gut microbiota. Cell Metab. 26, 672–685.e674 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Sonoyama, K. et al. Response of gut microbiota to fasting and hibernation in Syrian hamsters. Appl. Environ. Microbiol. 75, 6451–6456 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Remely, M. et al. Increased gut microbiota diversity and abundance of Faecalibacterium prausnitzii and Akkermansia after fasting: a pilot study. Wien. Klin. Wochenschr. 127, 394–398 (2015).

    PubMed  PubMed Central  Google Scholar 

  103. Costello, E. K., Gordon, J. I., Secor, S. M. & Knight, R. Postprandial remodeling of the gut microbiota in Burmese pythons. ISME J. 4, 1375–1385 (2010).

    CAS  PubMed  Google Scholar 

  104. Belzer, C. & de Vos, W. M. Microbes inside—from diversity to function: the case of Akkermansia. ISME J. 6, 1449–1458 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Weitkunat, K. et al. Short-chain fatty acids and inulin, but not guar gum, prevent diet-induced obesity and insulin resistance through differential mechanisms in mice. Sci. Rep. 7, 6109 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. Gao, Z. et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 58, 1509–1517 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lu, Y. et al. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein–coupled receptors and gut microbiota. Sci. Rep. 6, 37589 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Canfora, E. E., Jocken, J. W. & Blaak, E. E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11, 577–591 (2015).

    CAS  PubMed  Google Scholar 

  109. Hanatani, S. et al. Acetate alters expression of genes involved in beige adipogenesis in 3T3-L1 cells and obese KK-Ay mice. J. Clin. Biochem. Nutr. 59, 207–214 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Sahuri-Arisoylu, M. et al. Reprogramming of hepatic fat accumulation and ‘browning’ of adipose tissue by the short-chain fatty acid acetate. Int. J. Obes. (Lond.) 40, 955–963 (2016).

    CAS  Google Scholar 

  111. Bouter, K. et al. Differential metabolic effects of oral butyrate treatment in lean versus metabolic syndrome subjects. Clin. Transl. Gastroenterol. 9, 155 (2018).

    PubMed  PubMed Central  Google Scholar 

  112. Canfora, E. E. et al. Colonic infusions of short-chain fatty acid mixtures promote energy metabolism in overweight/obese men: a randomized crossover trial. Sci. Rep. 7, 2360 (2017).

    PubMed  PubMed Central  Google Scholar 

  113. Chambers, E. S. et al. Acute oral sodium propionate supplementation raises resting energy expenditure and lipid oxidation in fasted humans. Diabetes Obes. Metab. 20, 1034–1039 (2018).

    CAS  PubMed  Google Scholar 

  114. Rahat-Rozenbloom, S., Fernandes, J., Gloor, G. B. & Wolever, T. M. Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int. J. Obes. (Lond.) 38, 1525–1531 (2014).

    CAS  Google Scholar 

  115. Schwiertz, A. et al. Microbiota and SCFA in lean and overweight healthy subjects. Obes. (Silver Spring) 18, 190–195 (2010).

    Google Scholar 

  116. Pertwee, R. G. The pharmacology of cannabinoid receptors and their ligands: an overview. Int. J. Obes. 30(Suppl 1), S13–S18 (2006).

    CAS  Google Scholar 

  117. Geurts, L. et al. Adipose tissue NAPE-PLD controls fat mass development by altering the browning process and gut microbiota. Nat. Commun. 6, 6495 (2015).

    CAS  PubMed  Google Scholar 

  118. Pacher, P., Bátkai, S. & Kunos, G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 58, 389–462 (2006).

    CAS  PubMed  Google Scholar 

  119. Silvestri, C. & Di Marzo, V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 17, 475–490 (2013).

    CAS  PubMed  Google Scholar 

  120. Mazier, W., Saucisse, N., Gatta-Cherifi, B. & Cota, D. The endocannabinoid system: pivotal orchestrator of obesity and metabolic disease. Trends Endocrinol. Metab. 26, 524–537 (2015).

    CAS  PubMed  Google Scholar 

  121. Muccioli, G. et al. The endocannabinoid system links gut microbiota to adipogenesis. Mo. Syst. Biol. 6, 392 (2010).

    Google Scholar 

  122. Cluny, N. L., Keenan, C. M., Reimer, R. A., Le Foll, B. & Sharkey, K. A. Prevention of diet-induced obesity effects on body weight and gut microbiota in mice treated chronically with ∆9-tetrahydrocannabinol. PLoS One 10, e0144270 (2015).

    PubMed  PubMed Central  Google Scholar 

  123. Rousseaux, C. et al. Lactobacillus acidophilus modulates intestinal pain and induces opioid and cannabinoid receptors. Nat. Med. 13, 35–37 (2007).

    CAS  PubMed  Google Scholar 

  124. Cani, P. D. et al. Endocannabinoids—at the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol. 12, 133–143 (2016).

    CAS  PubMed  Google Scholar 

  125. Mikkelsen, K. H., Allin, K. H. & Knop, F. K. Effect of antibiotics on gut microbiota, glucose metabolism and body weight regulation: a review of the literature. Diabetes Obes. Metab. 18, 444–453 (2016).

    CAS  PubMed  Google Scholar 

  126. Cox, L. M. & Blaser, M. J. Antibiotics in early life and obesity. Nat. Rev. Endocrinol. 11, 182–190 (2015).

    PubMed  Google Scholar 

  127. Rodrigues, R. R. et al. Antibiotic-induced alterations in gut microbiota are associated with changes in glucose metabolism in healthy mice. Front. Microbiol. 8, 2306 (2017).

    PubMed  PubMed Central  Google Scholar 

  128. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet–induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    CAS  PubMed  Google Scholar 

  129. Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Cox, L. M. & Blaser, M. J. Pathways in microbe-induced obesity. Cell Metab. 17, 883–894 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Francino, M. P. Antibiotics and the human gut microbiome: dysbioses and accumulation of resistances. Front. Microbiol. 6, 1543 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. Reijnders, D. et al. Effects of gut microbiota manipulation by antibiotics on host metabolism in obese humans: a randomized double-blind placebo-controlled trial. Cell Metab. 24, 63–74 (2016).

    CAS  PubMed  Google Scholar 

  133. Nguyen, T. L., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model. Mech. 8, 1–16 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Gough, E. K. et al. The impact of antibiotics on growth in children in low and middle income countries: systematic review and meta-analysis of randomised controlled trials. Br. Med. J. 348, g2267 (2014).

    Google Scholar 

  135. Million, M., Diallo, A. & Raoult, D. Gut microbiota and malnutrition. Microb. Pathog. 106, 127–138 (2017).

    PubMed  Google Scholar 

  136. Alcoba, G. et al. Do children with uncomplicated severe acute malnutrition need antibiotics? A systematic review and meta-analysis. PLoS One 8, e53184 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Jacobson, E. D., Chodos, R. B. & Faloon, W. W. An experimental malabsorption syndrome induced by neomycin. Am. J. Med. 28, 524–533 (1960).

    CAS  PubMed  Google Scholar 

  138. Munukka, E. et al. Faecalibacterium prausnitzii treatment improves hepatic health and reduces adipose tissue inflammation in high-fat fed mice. ISME J. 11, 1667–1679 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. Maurice, C. F., Haiser, H. J. & Turnbaugh, P. J. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152, 39–50 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Saad, R., Rizkallah, M. R. & Aziz, R. K. Gut pharmacomicrobiomics: the tip of an iceberg of complex interactions between drugs and gut-associated microbes. Gut Pathog. 4, 16 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Imhann, F. et al. The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes 8, 351–358 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Le Bastard, Q. et al. Systematic review: human gut dysbiosis induced by non-antibiotic prescription medications. Aliment. Pharmacol. Ther. 47, 332–345 (2018).

    PubMed  Google Scholar 

  143. Falony, G. et al. Population-level analysis of gut microbiome variation. Science 352, 560–564 (2016).

    CAS  PubMed  Google Scholar 

  144. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Lee, D. H., Porta, M., Jacobs, D. R. Jr & Vandenberg, L. N. Chlorinated persistent organic pollutants, obesity, and type 2 diabetes. Endocr. Rev. 35, 557–601 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Lu, K., Mahbub, R. & Fox, J. G. Xenobiotics: interaction with the intestinal microflora. ILAR J. 56, 218–227 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Caparrós-Martín, J. A. et al. Statin therapy causes gut dysbiosis in mice through a PXR-dependent mechanism. Microbiome 5, 95 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. de la Cuesta-Zuluaga, J. et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care 40, 54–62 (2017).

    PubMed  Google Scholar 

  149. Ma, W. et al. Metformin alters gut microbiota of healthy mice: implication for its potential role in gut microbiota homeostasis. Front. Microbiol. 9, 1336 (2018).

    PubMed  PubMed Central  Google Scholar 

  150. Ursell, L. K. & Knight, R. Xenobiotics and the human gut microbiome: metatranscriptomics reveal the active players. Cell Metab. 17, 317–318 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhao, X. et al. Response of gut microbiota to metabolite changes induced by endurance exercise. Front. Microbiol. 9, 765 (2018).

    PubMed  PubMed Central  Google Scholar 

  152. Monda, V. et al. exercise modifies the gut microbiota with positive health effects. Oxid. Med. Cell. Longev. 2017, 3831972 (2017).

    PubMed  PubMed Central  Google Scholar 

  153. Chen, J., Guo, Y., Gui, Y. & Xu, D. Physical exercise, gut, gut microbiota, and atherosclerotic cardiovascular diseases. Lipids Health Dis. 17, 17 (2018).

    PubMed  PubMed Central  Google Scholar 

  154. Cerdá, B. et al. Gut microbiota modification: another piece in the puzzle of the benefits of physical exercise in health? Front. Physiol. 7, 51 (2016).

    PubMed  PubMed Central  Google Scholar 

  155. Allen, J. M. et al. Exercise alters gut microbiota composition and function in lean and obese humans. Med. Sci. Sports Exerc. 50, 747–757 (2018).

    PubMed  Google Scholar 

  156. Hsu, Y. J. et al. Effect of intestinal microbiota on exercise performance in mice. J. Strength Cond. Res. 29, 552–558 (2015).

    PubMed  Google Scholar 

  157. Matsumoto, M. et al. Voluntary running exercise alters microbiota composition and increases n-butyrate concentration in the rat cecum. Biosci. Biotechnol. Biochem. 72, 572–576 (2008).

    CAS  PubMed  Google Scholar 

  158. den Besten, G. et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 54, 2325–2340 (2013).

    Google Scholar 

  159. Clark, A. & Mach, N. The crosstalk between the gut microbiota and mitochondria during exercise. Front. Physiol. 8, 319 (2017).

    PubMed  PubMed Central  Google Scholar 

  160. Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 9, 311–326 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Pedersen, H. K. et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature 535, 376–381 (2016).

    CAS  PubMed  Google Scholar 

  162. Org, E. et al. Relationships between gut microbiota, plasma metabolites, and metabolic syndrome traits in the METSIM cohort. Genome Biol. 18, 70 (2017).

    PubMed  PubMed Central  Google Scholar 

  163. Liu, R. et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 23, 859–868 (2017).

    CAS  PubMed  Google Scholar 

  164. Ben-Othman, N. et al. Long-term GABA administration induces alpha cell-mediated beta-like cell neogenesis. Cell 168, 73–85.e11 (2017).

    CAS  PubMed  Google Scholar 

  165. de Vadder, F. & Mithieux, G. Gut–brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate. J. Endocrinol. 236, R105–R108 (2018).

    PubMed  Google Scholar 

  166. De Vadder, F. et al. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis. Cell Metab. 24, 151–157 (2016).

    PubMed  Google Scholar 

  167. Ley, R. E. Gut microbiota in 2015: Prevotella in the gut: choose carefully. Nat. Rev. Gastroenterol. Hepatol. 13, 69–70 (2016).

    CAS  PubMed  Google Scholar 

  168. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    PubMed  PubMed Central  Google Scholar 

  169. Heianza, Y. et al. Gut microbiota metabolites, amino acid metabolites and improvements in insulin sensitivity and glucose metabolism: the POUNDS Lost trial. Gut https://doi.org/10.1136/gutjnl-2018-316155 (2018).

  170. Zhu, W. et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165, 111–124 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Gao, X. et al. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J. Biosci. Bioeng. 118, 476–481 (2014).

    CAS  PubMed  Google Scholar 

  172. Koeth, R. A. et al. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. 20, 799–812 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Agus, A., Planchais, J. & Sokol, H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23, 716–724 (2018).

    CAS  PubMed  Google Scholar 

  174. Zhang, L. S. & Davies, S. S. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med. 8, 46 (2016).

    PubMed  PubMed Central  Google Scholar 

  175. Dodd, D. et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 551, 648–652 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Tuomainen, M. et al. Associations of serum indolepropionic acid, a gut microbiota metabolite, with type 2 diabetes and low-grade inflammation in high-risk individuals. Nutr. Diabetes 8, 35 (2018).

    PubMed  PubMed Central  Google Scholar 

  177. de Mello, V. D. et al. Indolepropionic acid and novel lipid metabolites are associated with a lower risk of type 2 diabetes in the Finnish Diabetes Prevention Study. Sci. Rep. 7, 46337 (2017).

    PubMed  PubMed Central  Google Scholar 

  178. Krishnan, S. et al. Gut microbiota–derived tryptophan metabolites modulate inflammatory response in hepatocytes and macrophages. Cell Rep. 23, 1099–1111 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Chimerel, C. et al. Bacterial metabolite indole modulates incretin secretion from intestinal enteroendocrine L cells. Cell Rep. 9, 1202–1208 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Beaumont, M. et al. The gut microbiota metabolite indole alleviates liver inflammation in mice. FASEB J. fj201800544 (2018).

  181. Koh, A. et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell 175, 947–961.e17 (2018).

    CAS  PubMed  Google Scholar 

  182. Klurfeld, D. M. et al. Considerations for best practices in studies of fiber or other dietary components and the intestinal microbiome. Am. J. Physiol. Endocrinol. Metab. https://doi.org/10.1152/ajpendo.00058.2018 (2018).

  183. Routy, B. et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol. 15, 382–396 (2018).

    CAS  PubMed  Google Scholar 

  184. Hempel, S. et al. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. J. Am. Med. Assoc. 307, 1959–1969 (2012).

    CAS  Google Scholar 

  185. Wei, D. et al. Probiotics for the prevention or treatment of chemotherapy- or radiotherapy-related diarrhoea in people with cancer. Cochrane Database Syst. Rev. 8, CD008831 (2018).

    PubMed  Google Scholar 

  186. Goldenberg, J. Z. et al. Probiotics for the prevention of Clostridium difficile–associated diarrhea in adults and children. Cochrane Database Syst. Rev. 12, CD006095 (2017).

    PubMed  Google Scholar 

  187. Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388–1405.e1321 (2018).

    CAS  PubMed  Google Scholar 

  188. Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423 e1416 (2018).

    CAS  PubMed  Google Scholar 

  189. Kootte, R. S. et al. Improvement of insulin sensitivity after lean donor feces in metabolic syndrome is driven by baseline intestinal microbiota composition. Cell Metab. 26, 611–619.e616 (2017).

    CAS  PubMed  Google Scholar 

  190. Kovatcheva-Datchary, P. et al. Dietary fiber-induced improvement in glucose metabolism is associated with increased Abundance of Prevotella. Cell Metab. 22, 971–982 (2015).

    CAS  PubMed  Google Scholar 

  191. Zeevi, D. et al. Personalized nutrition by prediction of glycemic responses. Cell 163, 1079–1094 (2015).

    CAS  PubMed  Google Scholar 

  192. Kondo, T., Kishi, M., Fushimi, T. & Kaga, T. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation. J. Agric. Food Chem. 57, 5982–5986 (2009).

    CAS  PubMed  Google Scholar 

  193. Hong, Y. H. et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology 146, 5092–5099 (2005).

    CAS  PubMed  Google Scholar 

  194. Ge, H. et al. Activation of G protein–coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinology 149, 4519–4526 (2008).

    CAS  PubMed  Google Scholar 

  195. Jocken, J. W. E. et al. Short-chain fatty acids differentially affect intracellular lipolysis in a human white adipocyte model. Front. Endocrinol. (Lausanne) 8, 372 (2018).

    Google Scholar 

  196. Jia, Y. et al. Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated β3 -adrenergic receptor activation in high-fat diet-induced obese mice. Exp. Physiol. 102, 273–281 (2017).

    PubMed  Google Scholar 

  197. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    PubMed  Google Scholar 

  198. Chapman, B. C. et al. Fecal microbiota transplant in patients with Clostridium difficile infection: a systematic review. J. Trauma Acute Care Surg. 81, 756–764 (2016).

    PubMed  Google Scholar 

  199. Carlucci, C., Petrof, E. O. & Allen-Vercoe, E. Fecal microbiota–based therapeutics for recurrent Clostridium difficile infection, ulcerative colitis and obesity. EBioMedicine 13, 37–45 (2016).

    PubMed  PubMed Central  Google Scholar 

  200. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916.e17 (2012).

    CAS  PubMed  Google Scholar 

  201. Cani, P. D. & Van Hul, M. Novel opportunities for next-generation probiotics targeting metabolic syndrome. Curr. Opin. Biotechnol. 32, 21–27 (2015).

    CAS  PubMed  Google Scholar 

  202. Patel, R. & DuPont, H. L. New approaches for bacteriotherapy: prebiotics, new-generation probiotics, and synbiotics. Clin. Infect. Dis. 60(Suppl 2), S108–S121 (2015).

    PubMed  PubMed Central  Google Scholar 

  203. Garruti, G., Di Ciaula, A., Wang, H. H., Wang, D. Q. & Portincasa, P. Cross-talk between bile acids and gastro-intestinal and thermogenic hormones: clues from bariatric surgery. Ann. Hepatol. 16, s68–s82 (2017).

    PubMed  Google Scholar 

  204. Liu, H., Hu, C., Zhang, X. & Jia, W. Role of gut microbiota, bile acids and their cross-talk in the effects of bariatric surgery on obesity and type 2 diabetes. J. Diabetes Investig. 9, 13–20 (2018).

    PubMed  Google Scholar 

  205. Cani, P. D. Gut microbiota—at the intersection of everything? Nat. Rev. Gastroenterol. Hepatol. 14, 321–322 (2017).

    PubMed  Google Scholar 

  206. Aron-Wisnewsky, J. et al. Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut 68, 70–82 (2018).

    PubMed  Google Scholar 

  207. Cani, P. D. Severe obesity and gut microbiota: does bariatric surgery really reset the system? Gut 68, 5–6 (2018).

    PubMed  Google Scholar 

  208. Wang, Z. et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 163, 1585–1595 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Laurans, L. et al. Genetic deficiency of indoleamine 2,3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat. Med. 24, 1113–1120 (2018).

    CAS  PubMed  Google Scholar 

  210. Chen, Z. et al. Incorporation of therapeutically modified bacteria into gut microbiota inhibits obesity. J. Clin. Invest. 124, 3391–3406 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

P.D.C. is a senior research associate at FRS-FNRS (Fonds de la Recherche Scientifique). A.E. is a research associate and MR research fellow at the FRS-FNRS. P.D.C. is a recipient of grants from FNRS, FRFS-WELBIO, under grant no. WELBIO-CR-2017-C02. This research was supported by the FRS-FNRS under The Excellence Of Science (EOS 30770923). This work is supported in part by the Funds Baillet Latour (Grant for Medical Research 2015). P.D.C. is a recipient of the POC ERC grant 2016 (European Research Council, Microbes4U_713547) and ERC Starting Grant 2013 (Starting grant 336452-ENIGMO).

Author information

Authors and Affiliations

Authors

Contributions

P.D.C. designed and conceived the outline of the Review. All authors have equally contributed to the writing.

Corresponding author

Correspondence to Patrice D. Cani.

Ethics declarations

Competing interests

P.D.C. and A.E. are inventors on patent applications (PCT/EP2013/073972; PCT/EP2016/071327, PCT/EP2016/060033 filed in European Patent Office (EP), Australia (AU), Brazil (BR), Canada (CA), China (CN), Eurasian Patent Organization (EA), Israel (IL), India (IN), Hong Kong (HK), Japan (JP), South Korea (KR), Mexico (MX), New Zealand (NZ), and the United States (US)) about the therapeutic use of A. muciniphila and its components. P.D.C. is co-founder of A-Mansia biotech SA.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cani, P.D., Van Hul, M., Lefort, C. et al. Microbial regulation of organismal energy homeostasis. Nat Metab 1, 34–46 (2019). https://doi.org/10.1038/s42255-018-0017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42255-018-0017-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing