Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing

An Author Correction to this article was published on 29 August 2023

An Author Correction to this article was published on 22 March 2021

This article has been updated

Abstract

We characterize the landscape of somatic mutations—mutations occurring after fertilization—in the human brain using ultra-deep (~250×) whole-genome sequencing of prefrontal cortex from 59 donors with autism spectrum disorder (ASD) and 15 control donors. We observe a mean of 26 somatic single-nucleotide variants per brain present in ≥4% of cells, with enrichment of mutations in coding and putative regulatory regions. Our analysis reveals that the first cell division after fertilization produces ~3.4 mutations, followed by 2–3 mutations in subsequent generations. This suggests that a typical individual possesses ~80 somatic single-nucleotide variants present in ≥2% of cells—comparable to the number of de novo germline mutations per generation—with about half of individuals having at least one potentially function-altering somatic mutation somewhere in the cortex. ASD brains show an excess of somatic mutations in neural enhancer sequences compared with controls, suggesting that mosaic enhancer mutations may contribute to ASD risk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental design and genome coverage.
Fig. 2: Mosaic mutations are present across the genomes of cases and controls.
Fig. 3: Clonal mutation analysis reveals mutational dynamics in the early embryo.
Fig. 4: Base substitutions vary with cell generation and replication timing.
Fig. 5: ASD brains contain somatic mutations affecting brain-active enhancers.

Similar content being viewed by others

Data availability

Whole-genome sequencing data are available from the National Institute of Mental Health Data Archive (https://doi.org/10.15154/1503337).

Code availability

Custom code is available from the authors by request.

Change history

References

  1. Lynch, M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl Acad. Sci. USA 107, 961–968 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. D’Gama, A. M. et al. Mammalian target of rapamycin pathway mutations cause hemimegalencephaly and focal cortical dysplasia. Ann. Neurol. 77, 720–725 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lim, J. S. et al. Somatic mutations in TSC1 and TSC2 cause focal cortical dysplasia. Am. J. Hum. Genet. 100, 454–472 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Nakashima, M. et al. Somatic mutations in the MTOR gene cause focal cortical dysplasia type IIb. Ann. Neurol. 78, 375–386 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. Erickson, R. P. Recent advances in the study of somatic mosaicism and diseases other than cancer. Curr. Opin. Genet. Dev. 26, 73–78 (2014).

    Article  PubMed  CAS  Google Scholar 

  6. Insel, T. R. Brain somatic mutations: the dark matter of psychiatric genetics? Mol. Psychiatry 19, 156–158 (2014).

    Article  PubMed  CAS  Google Scholar 

  7. McConnell, M. J. et al. Intersection of diverse neuronal genomes and neuropsychiatric disease: the brain somatic mosaicism network. Science https://doi.org/10.1126/science.aal1641 (2017).

  8. Lodato, M. A. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359, 555–559 (2018).

    Article  PubMed  CAS  Google Scholar 

  9. Keogh, M. J. et al. High prevalence of focal and multi-focal somatic genetic variants in the human brain. Nat. Commun. 9, 4257 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wei, W. et al. Frequency and signature of somatic variants in 1461 human brain exomes. Genet. Med. 21, 904–912 (2019).

    Article  PubMed  CAS  Google Scholar 

  11. Dou, Y. et al. Postzygotic single-nucleotide mosaicisms contribute to the etiology of autism spectrum disorder and autistic traits and the origin of mutations. Hum. Mutat. 38, 1002–1013 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Freed, D. & Pevsner, J. The contribution of mosaic variants to autism spectrum disorder. PLoS Genet. 12, e1006245 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lim, E. T. et al. Rates, distribution and implications of postzygotic mosaic mutations in autism spectrum disorder. Nat. Neurosci. 20, 1217–1224 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Krupp, D. R. et al. Exonic mosaic mutations contribute risk for autism spectrum disorder. Am. J. Hum. Genet. 101, 369–390 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. D’Gama, A. M. et al. Targeted DNA sequencing from autism spectrum disorder brains implicates multiple genetic mechanisms. Neuron 88, 910–917 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dou, Y. et al. Accurate detection of mosaic variants in sequencing data without matched controls. Nat. Biotechnol. 38, 314–319 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lodato, M. A. et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350, 94–98 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Doan, R. N. et al. Recessive gene disruptions in autism spectrum disorder. Nat. Genet. 51, 1092–1098 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Damaj, L. et al. CACNA1A haploinsufficiency causes cognitive impairment, autism and epileptic encephalopathy with mild cerebellar symptoms. Eur. J. Hum. Genet. 23, 1505–1512 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Epi4K Consortium De novo mutations in SLC1A2 and CACNA1A are important causes of epileptic encephalopathies. Am. J. Hum. Genet. 99, 287–298 (2016).

    Article  Google Scholar 

  21. Satterstrom, F. K. et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell 180, 568–584.e523 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mercer, T. R. et al. DNase I-hypersensitive exons colocalize with promoters and distal regulatory elements. Nat. Genet. 45, 852–859 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Polak, P. et al. Reduced local mutation density in regulatory DNA of cancer genomes is linked to DNA repair. Nat. Biotechnol. 32, 71–75 (2014).

    Article  PubMed  CAS  Google Scholar 

  25. Ye, A. Y. et al. A model for postzygotic mosaicisms quantifies the allele fraction drift, mutation rate, and contribution to de novo mutations. Genome Res. 28, 943–951 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ju, Y. S. et al. Somatic mutations reveal asymmetric cellular dynamics in the early human embryo. Nature 543, 714–718 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Bae, T. et al. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 359, 550–555 (2018).

    Article  PubMed  CAS  Google Scholar 

  28. Rahbari, R. et al. Timing, rates and spectra of human germline mutation. Nat. Genet. 48, 126–133 (2016).

    Article  PubMed  CAS  Google Scholar 

  29. Wong, C. C. et al. Non-invasive imaging of human embryos before embryonic genome activation predicts development to the blastocyst stage. Nat. Biotechnol. 28, 1115–1121 (2010).

    Article  PubMed  CAS  Google Scholar 

  30. Kiessling, A. A. et al. Genome-wide microarray evidence that 8-cell human blastomeres over-express cell cycle drivers and under-express checkpoints. J. Assist. Reprod. Genet. 27, 265–276 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gonzalez-Marin, C., Gosalvez, J. & Roy, R. Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Int. J. Mol. Sci. 13, 14026–14052 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Russell, L. B. & Russell, W. L. Spontaneous mutations recovered as mosaics in the mouse specific-locus test. Proc. Natl Acad. Sci. USA 93, 13072–13077 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Turner, T. N. et al. Genome sequencing of autism-affected families reveals disruption of putative noncoding regulatory DNA. Am. J. Hum. Genet. 98, 58–74 (2016).

    Article  PubMed  CAS  Google Scholar 

  34. Neale, B. M. et al. Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature 485, 242–245 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kryukov, G. V., Pennacchio, L. A. & Sunyaev, S. R. Most rare missense alleles are deleterious in humans: implications for complex disease and association studies. Am. J. Hum. Genet. 80, 727–739 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Chen, C. L. et al. Impact of replication timing on non-CpG and CpG substitution rates in mammalian genomes. Genome Res. 20, 447–457 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Koren, A. et al. Differential relationship of DNA replication timing to different forms of human mutation and variation. Am. J. Hum. Genet. 91, 1033–1040 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Seisenberger, S. et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48, 849–862 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Short, P. J. et al. De novo mutations in regulatory elements in neurodevelopmental disorders. Nature 555, 611–616 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Williams, S. M. et al. An integrative analysis of non-coding regulatory DNA variations associated with autism spectrum disorder. Mol. Psychiatry 24, 1707–1719 (2019).

    Article  PubMed  CAS  Google Scholar 

  42. Zhou, J. et al. Whole-genome deep-learning analysis identifies contribution of noncoding mutations to autism risk. Nat. Genet. 51, 973–980 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. An, J. Y. et al. Genome-wide de novo risk score implicates promoter variation in autism spectrum disorder. Science https://doi.org/10.1126/science.aat6576 (2018).

  44. Turner, T. N. et al. Genomic patterns of de novo mutation in simplex autism. Cell 171, 710–722.e712 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Consortium, G. T. Human genomics. The Genotype-Tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

    Article  Google Scholar 

  46. He, B., Chen, C., Teng, L. & Tan, K. Global view of enhancer–promoter interactome in human cells. Proc. Natl Acad. Sci. USA 111, E2191–E2199 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Jin, F. et al. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 503, 290–294 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Evrony, G. D. et al. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151, 483–496 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Miosge, L. A. et al. Comparison of predicted and actual consequences of missense mutations. Proc. Natl Acad. Sci. USA 112, E5189–E5198 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Genovese, G., Handsaker, R. E., Li, H., Kenny, E. E. & McCarroll, S. A. Mapping the human reference genome’s missing sequence by three-way admixture in Latino genomes. Am. J. Hum. Genet. 93, 411–421 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Yang, L. et al. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 153, 919–929 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Samocha, K. E. et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 46, 944–950 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. MacArthur, D. G. et al. A systematic survey of loss-of-function variants in human protein-coding genes. Science 335, 823–828 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Samocha, K. E. et al. Regional missense constraint improves variant deleteriousness prediction. Preprint at bioRxiv https://doi.org/10.1101/148353v1 (2017).

  61. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e164 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Roadmap Epigenomics, C. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    Article  Google Scholar 

  63. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Rimmer, A. et al. Integrating mapping-, assembly- and haplotype-based approaches for calling variants in clinical sequencing applications. Nat. Genet. 46, 912–918 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Yee, T. W. Vector Generalized Linear and Additive Models: with an Implementation in R (Springer-Verlag, 2015).

  66. Alexandrov, L. et al. The repertoire of mutational signatures in human cancer. Nature 578, 94–101 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Rosenthal, R., McGranahan, N., Herrero, J., Taylor, B. S. & Swanton, C. DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution. Genome Biol. 17, 31 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–4217 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Haradhvala, N. J. et al. Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair. Cell 164, 538–549 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

    Article  PubMed  CAS  Google Scholar 

  71. Consortium, G. T. et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  Google Scholar 

  72. Chong, J. A. et al. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80, 949–957 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Human tissue was obtained from the NIH NeuroBioBank at the University of Maryland, the Lieber Institute for Brain Development, Oxford University Brain Bank and Autism BrainNet. Autism BrainNet is a resource of the Simons Foundation Autism Research Initiative (SFARI). Autism BrainNet also manages the Autism Tissue Program (ATP) collection previously funded by Autism Speaks. We thank the donors and their families for their invaluable contribution to the advancement of science. We also thank R.S. Hill, J. Partlow, W. Bainter and the Research Computing group at Harvard Medical School for assistance. R.E.R., A.M.D. and S.N.K. are supported by the Stuart H.Q. and Victoria Quan Fellowship in Neurobiology. R.E.R., A.M.D. and A.N. are also supported by the Harvard/MIT MD-PhD program (grant no. T32GM007753) from the National Institute of General Medical Sciences. Y.D., M.K., M.A.S., D.C.G. and P.J.P. are supported by grants from the NIMH (grant nos. U01MH106883 and P50MH106933) and the Harvard Ludwig Center. L.J.L. and C.L.B. are supported by the Bioinformatics and Integrative Genomics training grant (no. T32HG002295) from the National Human Genome Research Institute. C.A.W. is supported by the Manton Center for Orphan Disease Research, the Allen Discovery Center program through The Paul G. Allen Frontiers Group, grant no. R01NS032457 from the NINDS and grant no. U01MH106883 from the NIMH. C.A.W. is an Investigator of the Howard Hughes Medical Institute. Data were generated as part of the Brain Somatic Mosaicism Network (BSMN) Consortium, supported by grant nos.: U01MH106874, U01MH106876, U01MH106882, U01MH106883, U01MH106883, U01MH106884, U01MH106891, U01MH106891, U01MH106891, U01MH106892, U01MH106893 and U01MH108898 awarded to: N.S. (Yale University), F.M.V. (Yale University), F.H.G. (Salk Institute for Biological Studies), C.A.W. (Boston Children’s Hospital), P.J.P. (Harvard University), J.P. (Kennedy Krieger Institute), A.C. (Icahn School of Medicine at Mount Sinai), J.V.M. (University of Michigan), D.R.W. (Lieber Institute for Brain Development) and J.G.G. (University of California, San Diego). The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

R.E.R., Y.D., P.J.P. and C.A.W. conceptualized the study. R.E.R., A.M.D. and S.N.K. generated whole-genome sequencing data. Y.D. led bioinformatic analysis with assistance from M.K. for variant identification and from M.A.S., L.J.L., C.L.B. and D.C.G for technical issues. R.E.R., L.M.R. and R.N.D. performed targeted variant validation. L.M.R. and K.M.G. performed cloning and luciferase assay experiments. A.N. performed germline pathogenic variant analysis. R.E.R., Y.D., P.J.P. and C.A.W. wrote the manuscript.

Corresponding authors

Correspondence to Peter J. Park or Christopher A. Walsh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodin, R.E., Dou, Y., Kwon, M. et al. The landscape of somatic mutation in cerebral cortex of autistic and neurotypical individuals revealed by ultra-deep whole-genome sequencing. Nat Neurosci 24, 176–185 (2021). https://doi.org/10.1038/s41593-020-00765-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41593-020-00765-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing