Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease

Abstract

Noncoding repeat expansions cause various neuromuscular diseases, including myotonic dystrophies, fragile X tremor/ataxia syndrome, some spinocerebellar ataxias, amyotrophic lateral sclerosis and benign adult familial myoclonic epilepsies. Inspired by the striking similarities in the clinical and neuroimaging findings between neuronal intranuclear inclusion disease (NIID) and fragile X tremor/ataxia syndrome caused by noncoding CGG repeat expansions in FMR1, we directly searched for repeat expansion mutations and identified noncoding CGG repeat expansions in NBPF19 (NOTCH2NLC) as the causative mutations for NIID. Further prompted by the similarities in the clinical and neuroimaging findings with NIID, we identified similar noncoding CGG repeat expansions in two other diseases: oculopharyngeal myopathy with leukoencephalopathy and oculopharyngodistal myopathy, in LOC642361/NUTM2B-AS1 and LRP12, respectively. These findings expand our knowledge of the clinical spectra of diseases caused by expansions of the same repeat motif, and further highlight how directly searching for expanded repeats can help identify mutations underlying diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Brain MRI of patients with FXTAS, NIID, OPML and OPDM.
Fig. 2: Direct identification of repeat expansion mutations by analysis of short reads of whole-genome sequence data.
Fig. 3: Identification of CGG repeat expansion mutations in NBPF19 in NIID.
Fig. 4: Characterization of CGG repeat expansion mutations in the 5′ UTR of NBPF19 in patients with NIID.
Fig. 5: Identification of CGG repeat expansions in LOC642361/NUTM2B-AS1 in a family with OPML.
Fig. 6: Identification of CGG repeat expansions in LRP12 in families with OPDM.

Similar content being viewed by others

Data availability

The genotyping microarray data and sequence data obtained by massively parallel sequencing analysis, including whole-genome sequencing and transcriptome analyses, are available on request from the corresponding author. Since whole-genome sequence data are protected by the Personal Information Protection Law, these data are available under regulation by the institutional review board.

References

  1. Loureiro, J. R., Oliveira, C. L. & Silveira, I. Unstable repeat expansions in neurodegenerative diseases: nucleocytoplasmic transport emerges on the scene. Neurobiol. Aging 39, 174–183 (2016).

    Article  CAS  Google Scholar 

  2. Vissers, L. E. et al. A de novo paradigm for mental retardation. Nat. Genet. 42, 1109–1112 (2010).

    Article  CAS  Google Scholar 

  3. Lindenberg, R., Rubinstein, L. J., Herman, M. M. & Haydon, G. B. A light and electron microscopy study of an unusual widespread nuclear inclusion body disease. A possible residuum of an old herpesvirus infection. Acta Neuropathol. 10, 54–73 (1968).

    Article  CAS  Google Scholar 

  4. Haltia, M., Somer, H., Palo, J. & Johnson, W. G. Neuronal intranuclear inclusion disease in identical twins. Ann. Neurol. 15, 316–321 (1984).

    Article  CAS  Google Scholar 

  5. Sone, J. et al. Clinicopathological features of adult-onset neuronal intranuclear inclusion disease. Brain 139, 3170–3186 (2016).

    Article  Google Scholar 

  6. Takahashi-Fujigasaki, J., Nakano, Y., Uchino, A. & Murayama, S. Adult-onset neuronal intranuclear hyaline inclusion disease is not rare in older adults. Geriatr. Gerontol. Int. 16, 51–56 (2016).

    Article  Google Scholar 

  7. Kimber, T. E. et al. Familial neuronal intranuclear inclusion disease with ubiquitin positive inclusions. J. Neurol. Sci. 160, 33–40 (1998).

    Article  CAS  Google Scholar 

  8. Sone, J. et al. Neuronal intranuclear hyaline inclusion disease showing motor-sensory and autonomic neuropathy. Neurology 65, 1538–1543 (2005).

    Article  CAS  Google Scholar 

  9. Yamaguchi, N. et al. An autopsy case of familial neuronal intranuclear inclusion disease with dementia and neuropathy. Intern. Med. 57, 3459–3462 (2018).

    Article  Google Scholar 

  10. Sone, J. et al. Neuronal intranuclear inclusion disease cases with leukoencephalopathy diagnosed via skin biopsy. J. Neurol. Neurosurg. Psychiatry 85, 354–356 (2014).

    Article  Google Scholar 

  11. Sone, J. et al. Skin biopsy is useful for the antemortem diagnosis of neuronal intranuclear inclusion disease. Neurology 76, 1372–1376 (2011).

    Article  CAS  Google Scholar 

  12. Nakano, Y. et al. PML nuclear bodies are altered in adult-onset neuronal intranuclear hyaline inclusion disease. J. Neuropathol. Exp. Neurol. 76, 585–594 (2017).

    Article  CAS  Google Scholar 

  13. Takumida, H. et al. Case of a 78-year-old woman with a neuronal intranuclear inclusion disease. Geriatr. Gerontol. Int. 17, 2623–2625 (2017).

    Article  Google Scholar 

  14. Sugiyama, A. et al. MR imaging features of the cerebellum in adult-onset neuronal intranuclear inclusion disease: 8 cases. Am. J. Neuroradiol. 38, 2100–2104 (2017).

    Article  CAS  Google Scholar 

  15. Hunsaker, M. R. et al. Widespread non-central nervous system organ pathology in fragile X premutation carriers with fragile X-associated tremor/ataxia syndrome and CGG knock-in mice. Acta Neuropathol. 122, 467–479 (2011).

    Article  CAS  Google Scholar 

  16. Hagerman, R. J. et al. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology 57, 299–301 (2001).

    Article  Google Scholar 

  17. Doi, K. et al. Rapid detection of expanded short tandem repeats in personal genomics using hybrid sequencing. Bioinformatics 30, 815–822 (2014).

    Article  CAS  Google Scholar 

  18. Ishiura, H. et al. Expansions of intronic TTTCA and TTTTA repeats in benign adult familial myoclonic epilepsy. Nat. Genet. 50, 581–590 (2018).

    Article  CAS  Google Scholar 

  19. Vandepoele, K., Van Roy, N., Staes, K., Speleman, F. & van Roy, F. A novel gene family NBPF: intricate structure generated by gene duplication during primate evolution. Mol. Biol. Evol. 22, 2265–2275 (2005).

    Article  CAS  Google Scholar 

  20. Fiddes, I. T. et al. Human-specific NOTCH2NL genes affect Notch signaling and cortical neurogenesis. Cell 173, 1356–1369 (2018).

    Article  CAS  Google Scholar 

  21. Suzuki, I. K. et al. Human-specific NOTCH2NL genes expand cortical neurogenesis through Delta/Notch regulation. Cell 173, 1370–1384 (2018).

    Article  CAS  Google Scholar 

  22. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  Google Scholar 

  23. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    Article  CAS  Google Scholar 

  24. Flusberg, B. A. et al. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat. Methods 7, 461–465 (2010).

    Article  CAS  Google Scholar 

  25. Suzuki, Y. et al. Agln: measuring the landscape of CpG methylation of individual repetitive elements. Bioinformatics 32, 2911–2919 (2016).

    Article  CAS  Google Scholar 

  26. Schuffler, M. D., Bird, T. D., Sumi, S. M. & Cook, A. A familial neuronal disease presenting as intestinal pseudoobstruction. Gastroenterology 75, 889–898 (1978).

    Article  CAS  Google Scholar 

  27. Satoyoshi, E. & Kinoshita, M. Oculopharyngodistal myopathy. Arch. Neurol. 34, 89–92 (1977).

    Article  CAS  Google Scholar 

  28. Durmus, H. et al. Oculopharyngodistal myopathy is a distinct entity: clinical and genetic features of 47 patients. Neurology 76, 227–235 (2011).

    Article  CAS  Google Scholar 

  29. Zhao, J. et al. Clinical and muscle imaging findings in 14 mainland Chinese patients with oculopharyngodistal myopathy. PLoS ONE 10, e0128629 (2015).

    Article  Google Scholar 

  30. Satoyoshi, E. Distal myopathy. Tohoku J. Exp. Med. 161, 1–19 (1990).

    Article  Google Scholar 

  31. Brais, B. et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat. Genet. 18, 164–167 (1998).

    Article  CAS  Google Scholar 

  32. Seltzer, M. M. et al. Prevalence of CGG expansions of the FMR1 gene in a US population-based sample. Am. J. Med. Genet. B Neuropsychiatr. Genet. 159B, 589–597 (2012).

    Article  Google Scholar 

  33. Beck, J. et al. Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. Am. J. Hum. Genet. 92, 345–353 (2013).

    Article  CAS  Google Scholar 

  34. Renton, A. E. et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron 72, 257–268 (2011).

    Article  CAS  Google Scholar 

  35. Jacquemont, S. et al. Penetrance of the fragile X-associated tremor/ataxia syndrome in a premutation carrier population. J. Am. Med. Assoc. 291, 460–469 (2004).

    Article  CAS  Google Scholar 

  36. Coffey, S. M. et al. Expanded clinical phenotype of women with the FMR1 premutation. Am. J. Med. Genet. A 146A, 1009–1016 (2008).

    Article  Google Scholar 

  37. DeJesus-Hernandez, M. et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron 72, 245–256 (2011).

    Article  CAS  Google Scholar 

  38. Fratta, P. et al. Screening a UK amyotrophic lateral sclerosis cohort provides evidence of multiple origins of the C9orf72 expansion. Neurobiol. Aging 36, 546.e1–546.e7 (2015).

    Article  CAS  Google Scholar 

  39. Buxton, J. et al. Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 355, 547–548 (1992).

    Article  CAS  Google Scholar 

  40. Zu, T. et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl Acad. Sci. USA 108, 260–265 (2011).

    Article  CAS  Google Scholar 

  41. Todd, P. K. et al. CGG repeat-associated translation mediates neurodegeneration in fragile X tremor ataxia syndrome. Neuron 78, 440–455 (2013).

    Article  CAS  Google Scholar 

  42. Uyama, E., Uchino, M., Chateau, D. & Tomé, F. M. Autosomal recessive oculopharyngodistal myopathy in light of distal myopathy with rimmed vacuoles and oculopharyngeal muscular dystrophy. Neuromuscul. Disord. 8, 119–125 (1998).

    Article  CAS  Google Scholar 

  43. Jin, P. et al. Pur α binds to rCGG repeats and modulates repeat-mediated neurodegeneration in a Drosophila model of fragile X tremor/ataxia syndrome. Neuron 55, 556–564 (2007).

    Article  CAS  Google Scholar 

  44. Sofola, O. A. et al. RNA-binding proteins hnRNP A2/B1 and CUGBP1 suppress fragile X CGG premutation repeat-induced neurodegeneration in a Drosophila model of FXTAS. Neuron 55, 565–571 (2007).

    Article  CAS  Google Scholar 

  45. Bahlo, M. et al. Recent advances in the detection of repeat expansions with short-read next-generation sequencing. F1000Res. 7, 736 (2018).

    Article  Google Scholar 

  46. Mitsuhashi, S. et al. Tandem-genotypes: robust detection of tandem repeat expansions from long DNA reads. Genome Biol. 20, 58 (2019).

    PubMed  PubMed Central  Google Scholar 

  47. Sznajder, J. et al. Intron retention induced by microsatellite expansions as a disease biomarker. Proc. Natl Acad. Sci. USA 115, 4234–4239 (2018).

    Article  CAS  Google Scholar 

  48. Fukuda, Y. et al. SNP HiTLink: a high-throughput linkage analysis system employing dense SNP data. BMC Bioinformatics. 10, 121 (2009).

    Article  CAS  Google Scholar 

  49. Gudbjartsson, D. F., Thorvaldsson, T., Kong, A., Gunnarsson, G. & Ingolfsdottir, A. Allegro version 2. Nat. Genet. 37, 1015–1016 (2005).

    Article  CAS  Google Scholar 

  50. Kent, W. J. BLAT—the blast-like alignment tool. Genome Res. 14, 656–664 (2002).

    Article  Google Scholar 

  51. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  Google Scholar 

  52. Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).

    Article  CAS  Google Scholar 

  53. Benson, G. Tandem repeat finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).

    Article  CAS  Google Scholar 

  54. Frey, U. H., Bachmann, H. S., Peters, J. & Siffert, W. PCR-amplification of GC-rich regions: ‘slowdown PCR’. Nat. Protoc. 3, 1312–1317 (2008).

    Article  CAS  Google Scholar 

  55. Su, J. et al. CpG_MP2: identification of CpG methylation patterns of genomic regions from high-throughput bisulfite sequencing data. Nucleic Acids Res. 41, e4 (2013).

    Article  CAS  Google Scholar 

  56. Dobin, A. et al. STAR: ultrafast universal RNA-Seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  Google Scholar 

  57. Li, H. et al. The sequence alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  58. Robinson, J. T. et al. Integrative genomic viewer. Nat. Biotechnol. 29, 24–26 (2011).

    Article  CAS  Google Scholar 

  59. Miyazawa, H. et al. Homozygosity haplotype allows a genomewide search for the autosomal segments shared among patients. Am. J. Hum. Genet. 80, 1090–1102 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the patients and family members for participating in the study. We also thank the neurologists, pathologists and radiologists of the patients for collecting and providing clinical information, K. J. L. Porto for proofreading, and K. Hirayama, M. Takeyama, Z. Wu and K. Wakabayashi for technical support. This work was supported in part by KAKENHI (Grants-in-Aid for Scientific Research on Innovative Areas (numbers 22129001 and 22129002) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, Grants-in-Aid (H23-Jitsuyoka (Nanbyo)-Ippan-004 and H26-Jitsuyoka (Nanbyo)-Ippan-080) from the Ministry of Health, Labour and Welfare, Japan, and grants (numbers 15ek0108065h0002, 16kk0205001h0001, 17kk0205001h0002 and 17ek0109279h0001) from the Japan Agency for Medical Research and Development; all to S.T.). This work was also supported by KAKENHI (Grants-in-Aid for Young Scientists (numbers 15K20941 and 17H05085) from the Japan Society for the Promotion of Science; to H.I) and the Advanced Genome Research and Bioinformatics Study to Facilitate Medical Innovation (GRIFIN) from the Japan Agency for Medical Research and Development (to S. Morishita).

Author information

Authors and Affiliations

Authors

Contributions

H.I. and S.T. designed the research. H.I., S.S., M.A.A., J.K., M.Taira, J.M., Y.Takahashi, Y.I., T.Matsukawa, M.Tanaka, H.D., J.G., T.T. and S.T. performed the experiments and/or analyzed the data. H.I., S.S., J.Y., Y.Suzuki., W.Q., K.D. and S.Morishita performed the computational analysis. H.I., S.S., J.K., M.Taira, J.M., Y.Takahashi, Y.I., T.Mano, A.I., Y.H., M.K.M., T.Matsukawa, M.Tanaka, Y.Shirota, R.O., H.K., A.Mitsue., H.H., S.Morimoto, S.Murayama, Y.Shiio, Y.Saito, A.Mitsutake, M.K., T.S., Y.Sugiyama, M.H., G.O., Y.Terao, Y.N., A.T., Y.Sakiyama, Y.U.-K., J.Shinmi, K.O., Y.K., S.-Y.L., A.H.T., J.Shimizu, J.G., I.N., T.T. and S.T. collected and analyzed the clinical data and/or provided patients’ samples. H.I. and S.T. wrote the manuscript, together with contributions from S.S. and S.Morishita. All authors contributed to and critically reviewed the manuscript.

Corresponding author

Correspondence to Shoji Tsuji.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17, Supplementary Note and Supplementary Tables 1–10

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishiura, H., Shibata, S., Yoshimura, J. et al. Noncoding CGG repeat expansions in neuronal intranuclear inclusion disease, oculopharyngodistal myopathy and an overlapping disease. Nat Genet 51, 1222–1232 (2019). https://doi.org/10.1038/s41588-019-0458-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-019-0458-z

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research