Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

De novo variants in neurodevelopmental disorders with epilepsy

Abstract

Epilepsy is a frequent feature of neurodevelopmental disorders (NDDs), but little is known about genetic differences between NDDs with and without epilepsy. We analyzed de novo variants (DNVs) in 6,753 parent–offspring trios ascertained to have different NDDs. In the subset of 1,942 individuals with NDDs with epilepsy, we identified 33 genes with a significant excess of DNVs, of which SNAP25 and GABRB2 had previously only limited evidence of disease association. Joint analysis of all individuals with NDDs also implicated CACNA1E as a novel disease-associated gene. Comparing NDDs with and without epilepsy, we found missense DNVs, DNVs in specific genes, age of recruitment, and severity of intellectual disability to be associated with epilepsy. We further demonstrate the extent to which our results affect current genetic testing as well as treatment, emphasizing the benefit of accurate genetic diagnosis in NDDs with epilepsy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DNVmis+trunc in EE-associated genes in different cohorts of NDDs.
Fig. 2: DNVs in NDDs with epilepsy (NDDsEE+uE, n = 1,874) versus without epilepsy (NDDswoE, n = 4,728) in 107 genes with significant DNV burden.

Similar content being viewed by others

References

  1. McTague, A., Howell, K. B., Cross, J. H., Kurian, M. A. & Scheffer, I. E. The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol. 15, 304–316 (2016).

    Article  PubMed  Google Scholar 

  2. Myers, C. T. & Mefford, H. C. Advancing epilepsy genetics in the genomic era. Genome Med. 7, 91 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Scheffer, I. E. et al. ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. Epilepsia 58, 512–521 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  4. McGrother, C. W. et al. Epilepsy in adults with intellectual disabilities: prevalence, associations and service implications. Seizure 15, 376–386 (2006).

    Article  PubMed  Google Scholar 

  5. Thomas, S., Hovinga, M. E., Rai, D. & Lee, B. K. Brief report: prevalence of co-occurring epilepsy and autism spectrum disorder: the U.S. National Survey of Children’s Health 2011–2012. J. Autism Dev. Disord. 47, 224–229 (2017).

    Article  PubMed  Google Scholar 

  6. Robinson, E. B. et al. Autism spectrum disorder severity reflects the average contribution of de novo and familial influences. Proc. Natl. Acad. Sci. USA 111, 15161–15165 (2014).

    Article  PubMed  CAS  Google Scholar 

  7. Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature 542, 433–438 (2017).

    Article  CAS  Google Scholar 

  8. Li, J. et al. Genes with de novo mutations are shared by four neuropsychiatric disorders discovered from NPdenovo database. Mol. Psychiatry 21, 290–297 (2016).

    Article  PubMed  CAS  Google Scholar 

  9. Berg, A. T. et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 51, 676–685 (2010).

    Article  PubMed  Google Scholar 

  10. Berg, A. T. & Millichap, J. J. The 2010 revised classification of seizures and epilepsy. Continuum (Minneap. Minn.) 19, 571–597 (2013).

    Google Scholar 

  11. Helbig, I. & Tayoun, A. A. Understanding genotypes and phenotypes in epileptic encephalopathies. Mol. Syndromol. 7, 172–181 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Trump, N. et al. Improving diagnosis and broadening the phenotypes in early-onset seizure and severe developmental delay disorders through gene panel analysis. J. Med. Genet. 53, 310–317 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Depienne, C. et al. Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J. Med. Genet. 46, 183–191 (2009).

    Article  PubMed  CAS  Google Scholar 

  14. Weckhuysen, S. et al. Extending the KCNQ2 encephalopathy spectrum: clinical and neuroimaging findings in 17 patients. Neurology 81, 1697–1703 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Wolff, M. et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 140, 1316–1336 (2017).

    Article  PubMed  Google Scholar 

  16. Stamberger, H. et al. STXBP1 encephalopathy: a neurodevelopmental disorder including epilepsy. Neurology 86, 954–962 (2016).

    Article  PubMed  CAS  Google Scholar 

  17. Howell, K. B., Harvey, A. S. & Archer, J. S. Epileptic encephalopathy: use and misuse of a clinically and conceptually important concept. Epilepsia 57, 343–347 (2016).

    Article  PubMed  Google Scholar 

  18. Chambers, C., Jansen, L. A. & Dhamija, R. Review of commercially available epilepsy genetic panels. J. Genet. Couns. 25, 213–217 (2016).

    Article  PubMed  Google Scholar 

  19. Lemke, J. R. et al. Targeted next generation sequencing as a diagnostic tool in epileptic disorders. Epilepsia 53, 1387–1398 (2012).

    Article  PubMed  CAS  Google Scholar 

  20. Iossifov, I. et al. The contribution of de novo coding mutations to autism spectrum disorder. Nature 515, 216–221 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zaidi, S. et al. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498, 220–223 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Singh, T. et al. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nat. Genet. 49, 1167–1173 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Lelieveld, S. H. et al. Meta-analysis of 2,104 trios provides support for 10 new genes for intellectual disability. Nat. Neurosci. 19, 1194–1196 (2016).

    Article  PubMed  CAS  Google Scholar 

  24. EuroEPINOMICS-RES Consortium. Epilepsy Phenome/Genome Project & Epi4K Consortium. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am. J. Hum. Genet. 95, 360–370 (2014).

  25. Hamdan, F. F. et al. De novo mutations in moderate or severe intellectual disability. PLoS Genet. 10, e1004772 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. de Ligt, J. et al. Diagnostic exome sequencing in persons with severe intellectual disability. N. Engl. J. Med. 367, 1921–1929 (2012).

    Article  PubMed  CAS  Google Scholar 

  27. Rauch, A. et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet 380, 1674–1682 (2012).

    Article  PubMed  CAS  Google Scholar 

  28. Helbig, K. L. et al. Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy. Genet. Med. 18, 898–905 (2016).

    Article  PubMed  CAS  Google Scholar 

  29. Fischbach, G. D. & Lord, C. The Simons Simplex Collection: a resource for identification of autism genetic risk factors. Neuron 68, 192–195 (2010).

    Article  PubMed  CAS  Google Scholar 

  30. Samocha, K. E. et al. A framework for the interpretation of de novo mutation in human disease. Nat. Genet. 46, 944–950 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kosmicki, J. A. et al. Refining the role of de novo protein-truncating variants in neurodevelopmental disorders by using population reference samples. Nat. Genet. 49, 504–510 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Reimand, J. et al. g:Profiler-a web server for functional interpretation of gene lists (2016 update). Nucleic Acids Res. 44, W83–W89 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. OCEBM Levels of Evidence Working Group. The Oxford Levels of Evidence (Oxford Centre for Evidence-Based Medicine, Oxford, 2009).

  35. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mulley, J. C., Scheffer, I. E., Petrou, S. & Berkovic, S. F. Channelopathies as a genetic cause of epilepsy. Curr. Opin. Neurol. 16, 171–176 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. Rehm, H. L. et al. ClinGen: the Clinical Genome Resource. N. Engl. J. Med. 372, 2235–2242 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Weckhuysen, S. et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann. Neurol. 71, 15–25 (2012).

    Article  PubMed  CAS  Google Scholar 

  39. Wagnon, J. L. et al. Pathogenic mechanism of recurrent mutations of SCN8A in epileptic encephalopathy. Ann. Clin. Transl. Neurol. 3, 114–123 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Blanchard, M. G. et al. De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. J. Med. Genet. 52, 330–337 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wilkie, A. O. The molecular basis of genetic dominance. J. Med. Genet. 31, 89–98 (1994).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Haynes, W. A., Tomczak, A. & Khatri, P. Gene annotation bias impedes biomedical research. Sci. Rep. 8, 1362 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  43. MacArthur, D. G. et al. Guidelines for investigating causality of sequence variants in human disease. Nature 508, 469–476 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Millichap, J. J. et al. KCNQ2 encephalopathy: features, mutational hot spots, and ezogabine treatment of 11 patients. Neurol. Genet. 2, e96 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. De Giorgis, V. & Veggiotti, P. GLUT1 deficiency syndrome 2013: current state of the art. Seizure 22, 803–811 (2013).

    Article  PubMed  Google Scholar 

  46. Farwell, K. D. et al. Enhanced utility of family-centered diagnostic exome sequencing with inheritance model-based analysis: results from 500 unselected families with undiagnosed genetic conditions. Genet. Med. 17, 578–586 (2015).

    Article  PubMed  CAS  Google Scholar 

  47. Huppke, P. et al. Activating de novo mutations in NFE2L2 encoding NRF2 cause a multisystem disorder. Nat. Commun. 8, 818 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Trujillano, D. et al. Clinical exome sequencing: results from 2819 samples reflecting 1000 families. Eur. J. Hum. Genet. 25, 176–182 (2017).

    Article  PubMed  CAS  Google Scholar 

  49. Chilamakuri, C. S. et al. Performance comparison of four exome capture systems for deep sequencing. BMC Genomics 15, 449 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Ware, J. S., Samocha, K. E., Homsy, J. & Daly, M. J. Interpreting de novo variation in human disease using denovolyzeR. Curr. Protoc. Hum. Genet. 87, 7.25 (2015).

    Google Scholar 

  51. Rubinstein, W. S. et al. The NIH genetic testing registry: a new, centralized database of genetic tests to enable access to comprehensive information and improve transparency. Nucleic Acids Res. 41, D925–D935 (2013).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank all patients and their families who participated in this study, as well as the teams who were involved in recruiting patients and gathering samples and data at the respective study sites. We thank L. Vissers and C. Gilissen for epilepsy and age phenotypes from the cohort of Lelieveld et al.23 and J. McRae for useful discussions on the DDD cohort7. We are grateful to members of the ATGU and the Institute for Human Genetics in Leipzig for insightful discussions. We thank J. Krause for support in figure design and helpful conversations. This work was supported by the Eurocores program EuroEPINOMICS, the Fund for Scientific Research Flanders (FWO), International Coordination Action (ICA) grant G0E8614N, and the University of Antwerp (research fund). H.O.H. was supported by stipends from the Federal Ministry of Education and Research (BMBF), Germany, FKZ: 01EO1501 and the German Research Foundation (DFG): HE7987/1-1. H.S. was supported as a PhD fellow of the Fund for Scientific Research Flanders (1125416 N). I.H. and Y.G.W. were supported by DFG grants WE4896/3-1 and HE5415/6-1. R.G. received funding through the EU Seventh Framework Programme (FP7) under the project DESIRE grant N602531. The DDD study presents independent research commissioned by the Health Innovation Challenge Fund (grant HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant WT098051). The views expressed in this publication are those of the authors and not necessarily those of the Wellcome Trust or the Department of Health. The research team acknowledges the support of the National Institute for Health Research, through the Comprehensive Clinical Research Network.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

H.O.H. performed the analyses and drafted the manuscript. H.O.H. and J.R.L. conceived the study. H.O.H., J.R.L., M.J.D., T.S., D.L. and H.S. contributed to analysis concepts and methods. H.O.H., J.R.L., D.L., I.H., T.S., M.J.D., S.M.S., and S. Weckhuysen interpreted the results. T.S., H.S., R.A.J., H.C., D.C., P.D.J., R.G., K.L.H., B.P.C.K., J.A.K., D.L., T.L., P.M., H.M., R.S.M., B.A.N., A. Palotie, M.P., P.S., S.T., S. Wu, the EuroEPINOMICS RES Consortium, S.T., A. Poduri, Y.G.W., S. Weckhuysen, and I.H. provided patient data or analysis tools. All authors revised and approved the final manuscript.

Corresponding authors

Correspondence to Henrike O. Heyne or Johannes R. Lemke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Figures

Supplementary Figures 1–10 and Supplementary Note

Reporting Summary

Supplementary Table 1

Description of cohorts analyzed in this study

Supplementary Table 2

List of all DNVmis, DNVtrunc, and DNVsynonymous of all NDD cohorts (n = 6,753) and controls (n = 1,911) analyzed in this study

Supplementary Table 3

List of 50 dominant and X-linked known EE genes

Supplementary Table 4

Genes with at least two DNVmis+trunc in NDDEE+uE (n = 1,942)

Supplementary Table 5

Genes with at least two DNVmis+trunc in all NDD (NDD EE+uE +woE, n = 6,753)

Supplementary Table 6

Significantly enriched HPO terms in 33 genes with DNV burden in NDD with epilepsy

Supplementary Table 7

Evaluating genes with at least two DNVmis+trunc in NDD with epilepsy for therapeutic consequences

Supplementary Table 8

Gene sets significantly enriched (odds raio > 1) or depleted (odds ratio < 1) for DNV in epilepsy compared to no epilepsy

Supplementary Table 9

DNV in epilepsy vs. no epilepsy

Supplementary Table 10

DNV in NDDuE vs. NDDEE

Supplementary Table 11

Diagnostic sequencing panels from 24 different academic and commercial providers

Supplementary Table 12

191 dominant/X-linked genes in sequencing panels from 24 different academic/commercial providers with three criteria for disease association in NDD with epilepsy (DNV burden, constraint, brain expression)

Supplementary Table 13

Evaluating 50 genes lacking features of DNV-enriched genes (DNV enrichment, constraint, brain expression) for published evidence for disease association using guidelines from the ClinGen Gene Curation Workgroup

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heyne, H.O., Singh, T., Stamberger, H. et al. De novo variants in neurodevelopmental disorders with epilepsy. Nat Genet 50, 1048–1053 (2018). https://doi.org/10.1038/s41588-018-0143-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-018-0143-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research