Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Fatigue in inflammatory rheumatic diseases: current knowledge and areas for future research

Abstract

Fatigue is a complex phenomenon and an important health concern for many people with chronic inflammatory rheumatic diseases, such as rheumatoid arthritis, psoriatic arthritis, primary Sjögren syndrome and systemic lupus erythematosus. Although some clinical trials have shown the benefits of cognitive behavioural therapy in fatigue management, the effect of this approach is relatively modest, and no curative treatment has been identified. The pathogenesis of fatigue remains unclear. Despite many challenges and limitations, a growing body of research points to roles for the immune system, the central and autonomic nervous systems and the neuroendocrine system in the induction and maintenance of fatigue in chronic diseases. New insights indicate that sleep, genetic susceptibility, metabolic disturbances and other biological and physiological mechanisms contribute to fatigue. Furthermore, understanding of the relationships between psychosocial factors and fatigue is increasing. However, the interrelationships between these diverse mechanisms and fatigue remain poorly defined. In this Review, we outline various biological, physiological and psychosocial determinants of fatigue in inflammatory rheumatic diseases, and propose mechanistic and conceptual models of fatigue to summarize current understanding, stimulate debate and develop further research ideas.

Key points

  • Fatigue is a common and disabling symptom of inflammatory rheumatic diseases.

  • The mechanisms of fatigue in inflammatory rheumatic diseases are not fully understood but are likely to involve multiple biological, physiological, psychosocial and behavioural mechanisms.

  • The mechanisms of fatigue in inflammatory rheumatic diseases might change over time and vary between individuals.

  • Fatigue might reflect the body’s resource management strategy in response to chronic stressors, favouring rationing and storage over expenditure.

  • Studying fatigue has many challenges; consensus on a study framework for fatigue research and a multidisciplinary approach are essential.

  • Optimal management of fatigue requires a personalized and holistic approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Putative mechanisms implicated in the pathogenesis of fatigue.
Fig. 2: The role of the nervous system in fatigue.
Fig. 3: Mechanistic model of fatigue.

Similar content being viewed by others

References

  1. Dures, E. et al. Patients’ perspectives on the psychological impact of inflammatory arthritis and meeting the associated support needs: open-ended responses in a multi-centre survey. Musculoskeletal Care 15, 175–185 (2017).

    Article  PubMed  Google Scholar 

  2. Overman, C. L., Kool, M. B., Da Silva, J. A. P. & Geenen, R. The prevalence of severe fatigue in rheumatic diseases: an international study. Clin. Rheumatol. 35, 409–415 (2016).

    Article  PubMed  Google Scholar 

  3. Dures, E. et al. “They didn’t tell us, they made us work it out ourselves”: patient perspectives of a cognitive-behavioral program for rheumatoid arthritis fatigue. Arthritis Care Res. 64, 494–501 (2012).

    Article  CAS  Google Scholar 

  4. Dures, E. et al. Patient preferences for psychological support in inflammatory arthritis: a multicentre survey. Ann. Rheum. Dis. 75, 142–147 (2016).

    Article  PubMed  Google Scholar 

  5. Swain, M. G. Fatigue in chronic disease. Clin. Sci. 99, 1–8 (2000).

    Article  CAS  Google Scholar 

  6. Druce, K. L. & Basu, N. Predictors of fatigue in rheumatoid arthritis. Rheumatology 58 (Suppl. 5), v29–v34 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Meijer, J. M. et al. Health-related quality of life, employment and disability in patients with Sjögren’s syndrome. Rheumatology 48, 1077–1082 (2009).

    Article  PubMed  Google Scholar 

  8. Westhoff, G., Dörner, T. & Zink, A. Fatigue and depression predict physician visits and work disability in women with primary Sjögren’s syndrome: results from a cohort study. Rheumatology 51, 262–269 (2012).

    Article  PubMed  Google Scholar 

  9. McCormick, N., Marra, C. A., Sadatsafavi, M., Kopec, J. A. & Aviña-Zubieta, J. A. Excess productivity costs of systemic lupus erythematosus, systemic sclerosis, and Sjögren’s Syndrome: a general population-based study. Arthritis Care Res. 71, 142–154 (2019).

    Article  Google Scholar 

  10. Basu, N. et al. Markers for work disability in anti-neutrophil cytoplasmic antibody-associated vasculitis. Rheumatology 53, 953–956 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Borrell-Carrió, F., Suchman, A. L. & Epstein, R. M. The biopsychosocial model 25 years later: principles, practice, and scientific inquiry. Ann. Fam. Med. 2, 576–582 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ng, W.-F. & Bowman, S. J. Primary Sjögren’s syndrome: too dry and too tired. Rheumatology 49, 844–853 (2010).

    Article  PubMed  Google Scholar 

  13. Ahn, G. E. & Ramsey-Goldman, R. Fatigue in systemic lupus erythematosus. Int. J. Clin. Rheumatol. 7, 217–227 (2012).

    Article  Google Scholar 

  14. Pope, J. E. Management of fatigue in rheumatoid arthritis. RMD Open 6, e001084 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Korte, S. M. & Straub, R. H. Fatigue in inflammatory rheumatic disorders: pathophysiological mechanisms. Rheumatology 58 (Suppl. 5), v35–v50 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hackett, K. L. et al. Impaired functional status in primary Sjogren’s syndrome. Arthritis Care Res. 64, 1760–1764 (2012).

    Article  Google Scholar 

  17. Hewlett, S. et al. Patients’ perceptions of fatigue in rheumatoid arthritis: overwhelming, uncontrollable, ignored. Arthritis Rheum. 53, 697–702 (2005).

    Article  PubMed  Google Scholar 

  18. Primdahl, J. et al. The experience of people with rheumatoid arthritis living with fatigue: a qualitative metasynthesis. BMJ Open 9, e024338 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jones, D. E. J., Gray, J. C. & Newton, J. Perceived fatigue is comparable between different disease groups. QJM 102, 617–624 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Jaime-Lara, R. B., Koons, B. C., Matura, L. A., Hodgson, N. A. & Riegel, B. A qualitative metasynthesis of the experience of fatigue across five chronic conditions. J. Pain. Symptom. Manag. 59, 1320–1343 (2020).

    Article  Google Scholar 

  21. Norheim, K. B., Jonsson, G. & Omdal, R. Biological mechanisms of chronic fatigue. Rheumatology 50, 1009–1018 (2011).

    Article  CAS  PubMed  Google Scholar 

  22. Bower, J. E. Cancer-related fatigue — mechanisms, risk factors, and treatments. Nat. Rev. Clin. Oncol. 11, 597–609 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jhamb, M., Weisbord, S. D., Steel, J. L. & Unruh, M. Fatigue in patients receiving maintenance dialysis: a review of definitions, measures, and contributing factors. Am. J. Kidney Dis. 52, 353–365 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  24. James, K. et al. A transcriptional signature of fatigue derived from patients with primary Sjögren’s syndrome. PLoS ONE 10, e0143970 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Da Costa, D. et al. Dimensions of fatigue in systemic lupus erythematosus: relationship to disease status and behavioral and psychosocial factors. J. Rheumatol. 33, 1282–1288 (2006).

    PubMed  Google Scholar 

  26. Bruce, I. N., Mak, V. C., Hallett, D. C., Gladman, D. D. & Urowitz, M. B. Factors associated with fatigue in patients with systemic lupus erythematosus. Ann. Rheum. Dis. 58, 379–381 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tench, C., McCurdie, I., White, P. & d’Cruz, D. The prevalence and associations of fatigue in systemic lupus erythematosus. Rheumatology 39, 1249–1254 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Azizoddin, D. R. et al. Fatigue in systemic lupus: the role of disease activity and its correlates. Lupus 28, 163–173 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Hewlett, S., Dures, E. & Almeida, C. Measures of fatigue: Bristol Rheumatoid Arthritis Fatigue Multi-Dimensional Questionnaire (BRAF MDQ), Bristol Rheumatoid Arthritis Fatigue Numerical Rating Scales (BRAF NRS) for severity, effect, and coping, Chalder Fatigue Questionnaire (CFQ), Checklist Individual Strength (CIS20R and CIS8R), Fatigue Severity Scale (FSS), Functional Assessment Chronic Illness Therapy (Fatigue) (FACIT-F), Multi-Dimensional Assessment of Fatigue (MAF), Multi-Dimensional Fatigue Inventory (MFI), Pediatric Quality Of Life (PedsQL) Multi-Dimensional Fatigue Scale, Profile of Fatigue (ProF), Short Form 36 Vitality Subscale (SF-36 VT), and Visual Analog Scales (VAS). Arthritis Care Res. 63 (Suppl. 11), S263–S286 (2011).

    Article  Google Scholar 

  30. Santos, E. J. F., Duarte, C., da Silva, J. A. P. & Ferreira, R. J. O. The impact of fatigue in rheumatoid arthritis and the challenges of its assessment. Rheumatology 58 (Suppl. 5), v3–v9 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Geenen, R. & Dures, E. A biopsychosocial network model of fatigue in rheumatoid arthritis: a systematic review. Rheumatology 58 (Suppl. 5), v10–v21 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lopes, P. C., Block, P. & König, B. Infection-induced behavioural changes reduce connectivity and the potential for disease spread in wild mice contact networks. Sci. Rep. 6, 31790 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Muskardin, T. L. W. & Niewold, T. B. Type I interferon in rheumatic diseases. Nat. Rev. Rheumatol. 14, 214–228 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Howard Tripp, N. et al. Fatigue in primary Sjögren’s syndrome is associated with lower levels of proinflammatory cytokines. RMD Open 2, e000282 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Umare, V. et al. Effect of proinflammatory cytokines (IL-6, TNF-α, and IL-1β) on clinical manifestations in Indian SLE patients. Mediators Inflamm. 2014, 385297 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Druce, K. L., Bhattacharya, Y., Jones, G. T., Macfarlane, G. J. & Basu, N. Most patients who reach disease remission following anti-TNF therapy continue to report fatigue: results from the British Society for Rheumatology Biologics Register for Rheumatoid Arthritis. Rheumatology 55, 1786–1790 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Tarn, J. R. et al. Symptom-based stratification of patients with primary Sjögren’s syndrome: multi-dimensional characterisation of international observational cohorts and reanalyses of randomised clinical trials. Lancet Rheumatol. 1, e85–e94 (2019).

    Article  PubMed Central  Google Scholar 

  39. Lendrem, D. et al. Do the EULAR Sjögren’s syndrome outcome measures correlate with health status in primary Sjögren’s syndrome? Rheumatology 54, 655–659 (2015).

    Article  PubMed  Google Scholar 

  40. Devauchelle-Pensec, V. et al. Improvement of Sjögren’s syndrome after two infusions of rituximab (anti-CD20). Arthritis Care Res. 57, 310–317 (2007).

    Article  CAS  Google Scholar 

  41. Dass, S. et al. Reduction of fatigue in Sjögren syndrome with rituximab: results of a randomised, double-blind, placebo-controlled pilot study. Ann. Rheum. Dis. 67, 1541–1544 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Carubbi, F. et al. Efficacy and safety of rituximab treatment in early primary Sjögren’s syndrome: a prospective, multi-center, follow-up study. Arthritis Res. Ther. 15, R172 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. St Clair, E. W. et al. Rituximab therapy for primary Sjögren’s Syndrome: an open-label clinical trial and mechanistic analysis. Arthritis Rheum. 65, 1097–1106 (2013).

    Article  CAS  Google Scholar 

  44. Devauchelle-Pensec, V. et al. Treatment of primary Sjögren syndrome with rituximab: a randomized trial. Ann. Intern. Med. 160, 233–242 (2014).

    Article  PubMed  Google Scholar 

  45. Bowman, S. J. et al. Randomized controlled trial of rituximab and cost-effectiveness analysis in treating fatigue and oral dryness in primary Sjögren’s Syndrome. Arthritis Rheumatol. 69, 1440–1450 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Posada, J. et al. Improvement of severe fatigue following nuclease therapy in patients with primary Sjögren’s syndrome: a randomized clinical trial. Arthritis Rheumatol. 73, 143–150 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Davies, K. et al. Fatigue in primary Sjögren’s syndrome (pSS) is associated with lower levels of proinflammatory cytokines: a validation study. Rheumatol. Int. 39, 1867–1873 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Almeida, C. et al. Biologic interventions for fatigue in rheumatoid arthritis. Cochrane Database Syst. Rev. 2016, CD008334 (2016).

    PubMed Central  Google Scholar 

  49. Pollard, L. C., Choy, E. H., Gonzalez, J., Khoshaba, B. & Scott, D. L. Fatigue in rheumatoid arthritis reflects pain, not disease activity. Rheumatology 45, 885–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bangert, E., Wakani, L., Merchant, M., Strand, V. & Touma, Z. Impact of belimumab on patient-reported outcomes in systemic lupus erythematosus: review of clinical studies. Patient Relat. Outcome Meas. 10, 1–7 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Strand, V. et al. Long-term impact of belimumab on health-related quality of life and fatigue in patients with systemic lupus erythematosus: six years of treatment. Arthritis Care Res. 71, 829–838 (2019).

    Article  CAS  Google Scholar 

  54. Russell, A. et al. Persistent fatigue induced by interferon-alpha: a novel, inflammation-based, proxy model of chronic fatigue syndrome. Psychoneuroendocrinology 100, 276–285 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sharpe, M. & Wilks, D. Fatigue. BMJ 325, 480 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Taylor, J. L., Amann, M., Duchateau, J., Meeusen, R. & Rice, C. L. Neural contributions to muscle fatigue: from the brain to the muscle and back again. Med. Sci. Sports Exerc. 48, 2294–2306 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Quan, N. & Banks, W. A. Brain-immune communication pathways. Brain Behav. Immun. 21, 727–735 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Stetler, R. A. et al. Heat shock proteins: cellular and molecular mechanisms in the central nervous system. Prog. Neurobiol. 92, 184–211 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Elenkov, I. J., Kovács, K., Duda, E., Stark, E. & Vizi, E. Z. Presynaptic inhibitory effect of TNF-alpha on the release of noradrenaline in isolated median eminence. Neuroimmunology 41, 117–120 (1992).

    Article  CAS  Google Scholar 

  60. Yamashita, M. & Yamamoto, T. Tryptophan circuit in fatigue: from blood to brain and cognition. Brain Res. 1675, 116–126 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. Åkesson, K. et al. Kynurenine pathway is altered in patients with SLE and associated with severe fatigue. Lupus Sci. Med. 5, e000254 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Schröcksnadel, K., Wirleitner, B., Winkler, C. & Fuchs, D. Monitoring tryptophan metabolism in chronic immune activation. Clin. Chim. Acta 364, 82–90 (2006).

    Article  PubMed  CAS  Google Scholar 

  63. Karageorgas, T. et al. Fatigue in primary Sjögren’s syndrome: clinical, laboratory, psychometric, and biologic associations. Arthritis Care Res. 68, 123–131 (2016).

    Article  CAS  Google Scholar 

  64. Strasser, B. et al. Effects of exhaustive aerobic exercise on tryptophan-kynurenine metabolism in trained athletes. PLoS ONE 11, e0153617 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Malhotra, R. et al. Tryptophan and kynurenine levels and its association with sleep, nonphysical fatigue, and depression in chronic hemodialysis patients. J. Ren. Nutr. 27, 260–266 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. Larssen, E. et al. Fatigue in primary Sjögren’s syndrome: a proteomic pilot study of cerebrospinal fluid. SAGE Open Med. 7, 2050312119850390 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Harboe, E. et al. Fatigue in primary Sjögren’s syndrome — a link to sickness behaviour in animals? Brain Behav. Immun. 23, 1104–1108 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Bårdsen, K. et al. Interleukin-1-related activity and hypocretin-1 in cerebrospinal fluid contribute to fatigue in primary Sjögren’s syndrome. J. Neuroinflammation 16, 102 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Schrepf, A. et al. A multi-modal MRI study of the central response to inflammation in rheumatoid arthritis. Nat. Commun. 9, 2243 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Basu, N. et al. Neural correlates of fatigue in granulomatosis with polyangiitis: a functional magnetic resonance imaging study. Rheumatology 53, 2080–2087 (2014).

    Article  CAS  PubMed  Google Scholar 

  71. Kraynak, T. E., Marsland, A. L., Wager, T. D. & Gianaros, P. J. Functional neuroanatomy of peripheral inflammatory physiology: a meta-analysis of human neuroimaging studies. Neurosci. Biobehav. Rev. 94, 76–92 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Goñi, M., Basu, N., Murray, A. D. & Waiter, G. D. Neural indicators of fatigue in chronic diseases: a systematic review of MRI studies. Diagnostics 8, 42 (2018).

    Article  PubMed Central  Google Scholar 

  73. Kutlubaev, M. A., Duncan, F. H. & Mead, G. E. Biological correlates of post-stroke fatigue: a systematic review. Acta Neurol. Scand. 125, 219–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  74. Mastorakos, G., Chrousos, G. P. & Weber, J. S. Recombinant interleukin-6 activates the hypothalamic-pituitary-adrenal axis in humans. J. Clin. Endocrinol. Metab. 77, 1690–1694 (1993).

    CAS  PubMed  Google Scholar 

  75. Tsigos, C. et al. Dose effects of recombinant human interleukin-6 on pituitary hormone secretion and energy expenditure. Neuroendocrinology 66, 54–62 (1997).

    Article  CAS  PubMed  Google Scholar 

  76. Johnson, E. O., Vlachoyiannopoulos, P. G., Skopouli, F. N., Tzioufas, A. G. & Moutsopoulos, H. M. Hypofunction of the stress axis in Sjögren’s syndrome. J. Rheumatol. 25, 1508–1514 (1998).

    CAS  PubMed  Google Scholar 

  77. Crofford, L. J. et al. Circadian relationships between interleukin (IL)-6 and hypothalamic-pituitary-adrenal axis hormones: failure of IL-6 to cause sustained hypercortisolism in patients with early untreated rheumatoid arthritis. J. Clin. Endocrinol. Metab. 82, 1279–1283 (1997).

    Article  CAS  PubMed  Google Scholar 

  78. Straub, R. H., Paimela, L., Peltomaa, R., Schölmerich, J. & Leirisalo-Repo, M. Inadequately low serum levels of steroid hormones in relation to interleukin-6 and tumor necrosis factor in untreated patients with early rheumatoid arthritis and reactive arthritis. Arthritis Rheum. 46, 654–662 (2002).

    Article  CAS  PubMed  Google Scholar 

  79. Gutiérrez, M. A., Garcia, M. E., Rodriguez, J. A., Rivero, S. & Jacobelli, S. Hypothalamic-pituitary-adrenal axis function and prolactin secretion in systemic lupus erythematosus. Lupus 7, 404–408 (1998).

    Article  PubMed  Google Scholar 

  80. Evers, A. W. et al. Does stress affect the joints? Daily stressors, stress vulnerability, immune and HPA axis activity, and short-term disease and symptom fluctuations in rheumatoid arthritis. Ann. Rheum. Dis. 73, 1683–1688 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Jump, R. L. et al. Fatigue in systemic lupus erythematosus: contributions of disease activity, pain, depression, and perceived social support. J. Rheumatol. 32, 1699–1705 (2005).

    PubMed  Google Scholar 

  82. Cutolo, M., Sulli, A., Pizzorni, C., Craviotto, C. & Straub, R. H. Hypothalamic-pituitary-adrenocortical and gonadal functions in rheumatoid arthritis. Ann. N. Y. Acad. Sci. 992, 107–117 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Moulton, V. R. Sex hormones in acquired immunity and autoimmune disease. Front. Immunol. 9, 2279 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Johnson, E. O. & Moutsopoulos, H. M. Neuroendocrine manifestations in Sjögren’s syndrome. Relation to the neurobiology of stress. Ann. N. Y. Acad. Sci. 917, 797–808 (2000).

    Article  CAS  PubMed  Google Scholar 

  85. Sundman, E. & Olofsson, P. S. Neural control of the immune system. Adv. Physiol. Educ. 38, 135–139 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Porges, S. W. The polyvagal theory: phylogenetic substrates of a social nervous system. Int. J. Psychophysiol. 42, 123–146 (2001).

    Article  CAS  PubMed  Google Scholar 

  87. Brunetta, E. et al. Autonomic abnormalities in patients with primary Sjogren’s syndrome — preliminary results. Front. Physiol. 10, 1104 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Newton, J. L. et al. Autonomic symptoms are common and are associated with overall symptom burden and disease activity in primary Sjögren’s syndrome. Ann. Rheum. Dis. 71, 1973–1979 (2012).

    Article  PubMed  Google Scholar 

  89. Koh, J. H. et al. Pain, xerostomia, and younger age are major determinants of fatigue in Korean patients with primary Sjögren’s syndrome: a cohort study. Scand. J. Rheumatol. 46, 49–55 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Mandl, T., Wollmer, P., Manthorpe, R. & Jacobsson, L. T. Autonomic and orthostatic dysfunction in primary Sjögren’s syndrome. J. Rheumatol. 34, 1869–1874 (2007).

    PubMed  Google Scholar 

  91. Fox, R. I., Kang, H. I., Ando, D., Abrams, J. & Pisa, E. Cytokine mRNA expression in salivary gland biopsies of Sjögren’s syndrome. J. Immunol. 152, 5532–5539 (1994).

    Article  CAS  PubMed  Google Scholar 

  92. Barendregt, P. J. et al. Parasympathetic failure does not contribute to ocular dryness in primary Sjögren’s syndrome. Ann. Rheum. Dis. 58, 746–750 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kovács, L. et al. Cardiovascular autonomic dysfunction in primary Sjögren’s syndrome. Rheumatology 43, 95–99 (2004).

    Article  PubMed  Google Scholar 

  94. Barendregt, P. J., Tulen, J. H., van den Meiracker, A. H. & Markusse, H. M. Spectral analysis of heart rate and blood pressure variability in primary Sjögren’s syndrome. Ann. Rheum. Dis. 61, 232–236 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Niemelä, R. K., Hakala, M., Huikuri, H. V. & Airaksinen, K. E. Comprehensive study of autonomic function in a population with primary Sjögren’s syndrome. No evidence of autonomic involvement. J. Rheumatol. 30, 74–79 (2003).

    PubMed  Google Scholar 

  96. Tumiati, B., Perazzoli, F., Negro, A., Pantaleoni, M. & Regolisti, G. Heart rate variability in patients with Sjögren’s syndrome. Clin. Rheumatol. 19, 477–480 (2000).

    Article  CAS  PubMed  Google Scholar 

  97. Tarn, J., Legg, S., Mitchell, S., Simon, B. & Ng, W. F. The effects of noninvasive vagus nerve stimulation on fatigue and immune responses in patients with primary Sjögren’s syndrome. Neuromodulation 22, 580–585 (2019).

    Article  PubMed  Google Scholar 

  98. Ingegnoli, F. et al. The link between autonomic nervous system and rheumatoid arthritis: from bench to bedside. Front. Med. 7, 589079 (2020).

    Article  Google Scholar 

  99. Bortoluzzi, A., Silvagni, E., Furini, F., Piga, M. & Govoni, M. Peripheral nervous system involvement in systemic lupus erythematosus: a review of the evidence. Clin. Exp. Rheumatol. 37, 146–155 (2019).

    PubMed  Google Scholar 

  100. Stojanovich, L. Autonomic dysfunction in autoimmune rheumatic disease. Autoimmun. Rev. 8, 569–572 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Koopman, F. A. et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 113, 8284–8289 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Genovese, M. C. et al. Safety and efficacy of neurostimulation with a miniaturised vagus nerve stimulation device in patients with multidrug-refractory rheumatoid arthritis: a two-stage multicentre, randomised pilot study. Lancet Rheumatol. 2, e527–e538 (2020).

    Article  Google Scholar 

  103. Thomas, K. S., Motivala, S., Olmstead, R. & Irwin, M. R. Sleep depth and fatigue: role of cellular inflammatory activation. Brain Behav. Immun. 25, 53–58 (2011).

    Article  CAS  PubMed  Google Scholar 

  104. Meerlo, P., Sgoifo, A. & Suchecki, D. Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med. Rev. 12, 197–210 (2008).

    Article  PubMed  Google Scholar 

  105. Lewis, I., Hackett, K. L., Ng, W.-F., Ellis, J. & Newton, J. L. A two-phase cohort study of the sleep phenotype within primary Sjögren’s syndrome and its clinical correlates. Clin. Exp. Rheumatol. 37 (Suppl. 118), 78–82 (2019).

    PubMed  Google Scholar 

  106. Irwin, M. R. Sleep and inflammation: partners in sickness and in health. Nat. Rev. Immunol. 19, 702–715 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Guyon, A. et al. Adverse effects of two nights of sleep restriction on the hypothalamic-pituitary-adrenal axis in healthy men. J. Clin. Endocrinol. Metab. 99, 2861–2868 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Grabovac, I. et al. Sleep quality in patients with rheumatoid arthritis and associations with pain, disability, disease duration, and activity. J. Clin. Med. 7, 336 (2018).

    Article  PubMed Central  Google Scholar 

  109. Sariyildiz, M. A. et al. Sleep quality in rheumatoid arthritis: relationship between the disease severity, depression, functional status and the quality of life. J. Clin. Med. Res. 6, 44–52 (2014).

    PubMed  Google Scholar 

  110. Palagini, L. et al. Sleep disorders and systemic lupus erythematosus. Lupus 23, 115–123 (2014).

    Article  CAS  PubMed  Google Scholar 

  111. Hackett, K. L. et al. An investigation into the prevalence of sleep disturbances in primary Sjögren’s syndrome: a systematic review of the literature. Rheumatology 56, 570–580 (2017).

    PubMed  Google Scholar 

  112. Reinisch, T. & Hinz, H. In Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine (eds Ganten, D. & Ruckpaul, K.) Vol. 9, 919 (Springer, 2006).

  113. Hausladen, A., Privalle, C. T., Keng, T., DeAngelo, J. & Stamler, J. S. Nitrosative stress: activation of the transcription factor OxyR. Cell 86, 719–729 (1996).

    Article  CAS  PubMed  Google Scholar 

  114. Avalos, I. et al. Oxidative stress in systemic lupus erythematosus: relationship to disease activity and symptoms. Lupus 16, 195–200 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Shah, D., Kiran, R., Wanchu, A. & Bhatnagar, A. Oxidative stress in systemic lupus erythematosus: relationship to Th1 cytokine and disease activity. Immunol. Lett. 129, 7–12 (2010).

    Article  CAS  PubMed  Google Scholar 

  116. Powers, S. K., Ji, L. L., Kavazis, A. N. & Jackson, M. J. Reactive oxygen species: impact on skeletal muscle. Compr. Physiol. 1, 941–969 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Novelli, G. P., Bracciotti, G. & Falsini, S. Spin-trappers and vitamin E prolong endurance to muscle fatigue in mice. Free Radic. Biol. Med. 8, 9–13 (1990).

    Article  CAS  PubMed  Google Scholar 

  118. Shindoh, C., DiMarco, A., Thomas, A., Manubay, P. & Supinski, G. Effect of N-acetylcysteine on diaphragm fatigue. J. Appl. Physiol. 68, 2107–2113 (1990).

    Article  CAS  PubMed  Google Scholar 

  119. Dassouki, T. et al. Objectively measured physical activity and its influence on physical capacity and clinical parameters in patients with primary Sjögren’s syndrome. Lupus 26, 690–697 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Miyamoto, S. T. et al. Supervised walking improves cardiorespiratory fitness, exercise tolerance, and fatigue in women with primary Sjogren’s syndrome: a randomized-controlled trial. Rheumatol. Int. 39, 227–238 (2019).

    Article  PubMed  Google Scholar 

  121. Ng, W. F. et al. Physical activity but not sedentary activity is reduced in primary Sjogren’s syndrome. Rheumatol. Int. 37, 623–631 (2017).

    Article  PubMed  Google Scholar 

  122. Wouters, E. J. M. et al. Physical activity and physical activity cognitions are potential factors maintaining fatigue in patients with primary Sjögren’s syndrome. Ann. Rheum. Dis. 71, 668–673 (2012).

    Article  PubMed  Google Scholar 

  123. Keyser, R. E. et al. Evidence for aerobic insufficiency in women with systemic lupus erythematosus. Arthritis Rheum. 49, 16–22 (2003).

    Article  PubMed  Google Scholar 

  124. Metsios, G. S. et al. Cardiorespiratory fitness levels and their association with cardiovascular profile in patients with rheumatoid arthritis: a cross-sectional study. Rheumatology 54, 2215–2220 (2015).

    PubMed  Google Scholar 

  125. Løppenthin, K. et al. Physical activity and the association with fatigue and sleep in Danish patients with rheumatoid arthritis. Rheumatol. Int. 35, 1655–1664 (2015).

    Article  PubMed  Google Scholar 

  126. Rongen-van Dartel, S. A. et al. Effect of aerobic exercise training on fatigue in rheumatoid arthritis: a meta-analysis. Arthritis Care Res. 67, 1054–1062 (2015).

    Article  CAS  Google Scholar 

  127. Cramp, F. The role of non-pharmacological interventions in the management of rheumatoid-arthritis-related fatigue. Rheumatology 58 (Suppl. 5), v22–v28 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Cramp, F. et al. Non-pharmacological interventions for fatigue in rheumatoid arthritis. Cochrane Database Syst. Rev. 8, CD008322 (2013).

    Google Scholar 

  129. Robb-Nicholson, L. C. et al. Effects of aerobic conditioning in lupus fatigue: a pilot study. Rheumatology 28, 500–505 (1989).

    Article  CAS  Google Scholar 

  130. Tench, C., McCarthy, J., McCurdie, I., White, P. & D’Cruz, D. Fatigue in systemic lupus erythematosus: a randomized controlled trial of exercise. Rheumatology 42, 1050–1054 (2003).

    Article  CAS  PubMed  Google Scholar 

  131. Andonian, B. J. & Huffman, K. M. Skeletal muscle disease in rheumatoid arthritis: the center of cardiometabolic comorbidities? Curr. Opin. Rheumatol. 32, 297–306 (2020).

    Article  PubMed  Google Scholar 

  132. An, H. J. et al. Sarcopenia in autoimmune and rheumatic diseases: a comprehensive review. Int. J. Mol. Sci. 21, 5678 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  133. Lindvall, B., Bengtsson, A., Ernerudh, J. & Eriksson, P. Subclinical myositis is common in primary Sjögren’s syndrome and is not related to muscle pain. J. Rheumatol. 29, 717–725 (2002).

    PubMed  Google Scholar 

  134. Baker, J. F. et al. Deficits in muscle mass, muscle density, and modified associations with fat in rheumatoid arthritis. Arthritis Care Res. 66, 1612–1618 (2014).

    Article  Google Scholar 

  135. Caimmi, C. et al. Malnutrition and sarcopenia in a large cohort of patients with systemic sclerosis. Clin. Rheumatol. 37, 987–997 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Tournadre, A., Pereira, B., Gossec, L., Soubrier, M. & Dougados, M. Impact of comorbidities on fatigue in rheumatoid arthritis patients: results from a nurse-led program for comorbidities management (COMEDRA). Joint Bone Spine 86, 55–60 (2019).

    Article  PubMed  Google Scholar 

  137. Feldthusen, C., Grimby-Ekman, A., Forsblad-d’Elia, H., Jacobsson, L. & Mannerkorpi, K. Explanatory factors and predictors of fatigue in persons with rheumatoid arthritis: a longitudinal study. J. Rehabil. Med. 48, 469–476 (2016).

    Article  PubMed  Google Scholar 

  138. Katz, P. et al. Role of sleep disturbance, depression, obesity, and physical inactivity in fatigue in rheumatoid arthritis. Arthritis Care Res. 68, 81–90 (2016).

    Article  Google Scholar 

  139. Chaiamnuay, S. et al. The impact of increased body mass index on systemic lupus erythematosus: data from LUMINA, a multiethnic cohort (LUMINA XLVI) [corrected]. J. Clin. Rheumatol. 13, 128–133 (2007).

    Article  PubMed  Google Scholar 

  140. Oeser, A., Chung, C. P., Asanuma, Y., Avalos, I. & Stein, C. M. Obesity is an independent contributor to functional capacity and inflammation in systemic lupus erythematosus. Arthritis Rheum. 52, 3651–3659 (2005).

    Article  CAS  PubMed  Google Scholar 

  141. Pajoutan, M., Ghesmaty Sangachin, M. & Cavuoto, L. A. Central and peripheral fatigue development in the shoulder muscle with obesity during an isometric endurance task. BMC Musculoskelet. Disord. 18, 314 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Osborn, O. & Olefsky, J. M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat. Med. 18, 363–374 (2012).

    Article  CAS  PubMed  Google Scholar 

  143. Matcham, F., Rayner, L., Steer, S. & Hotopf, M. The prevalence of depression in rheumatoid arthritis: a systematic review and meta-analysis. Rheumatology 52, 2136–2148 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Gold, S. M. et al. Comorbid depression in medical diseases. Nat. Rev. Dis. Prim. 6, 69 (2020).

    Article  PubMed  Google Scholar 

  145. Hackett, K. L. et al. Pain and depression are associated with both physical and mental fatigue independently of comorbidities and medications in primary Sjögren’s syndrome. RMD Open 5, e000885 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Wilson, N., Lee, J. J. & Bei, B. Postpartum fatigue and depression: a systematic review and meta-analysis. J. Affect. Disord. 246, 224–233 (2019).

    Article  PubMed  Google Scholar 

  147. World Health Organisation. ICD-10 classification of mental and behavioural disorders (WHO, 2016).

  148. Nerurkar, L., Siebert, S., McInnes, I. B. & Cavanagh, J. Rheumatoid arthritis and depression: an inflammatory perspective. Lancet Psychiatry 6, 164–173 (2019).

    Article  PubMed  Google Scholar 

  149. Bårdsen, K. et al. Heat shock proteins and chronic fatigue in primary Sjögren’s syndrome. Innate Immun. 22, 162–167 (2016).

    Article  PubMed  CAS  Google Scholar 

  150. Mondelli, V. & Vernon, A. C. From early adversities to immune activation in psychiatric disorders: the role of the sympathetic nervous system. Clin. Exp. Immunol. 197, 319–328 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rossi, S. et al. Neuroinflammation drives anxiety and depression in relapsing-remitting multiple sclerosis. Neurology 89, 1338–1347 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Omdal, R., Mellgren, S. I. & Norheim, K. B. Pain and fatigue in primary Sjögren’s syndrome. Rheumatology https://doi.org/10.1093/rheumatology/kez027 (2019).

    Article  PubMed  Google Scholar 

  153. Nichilatti, L. P., Fernandes, J. M. & Marques, C. P. Physiopathology of pain in systemic erythematosus lupus. Lupus 29, 721–726 (2020).

    Article  CAS  PubMed  Google Scholar 

  154. Morgan, C., Bland, A. R., Maker, C., Dunnage, J. & Bruce, I. N. Individuals living with lupus: findings from the LUPUS UK Members Survey 2014. Lupus 27, 681–687 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Sanderson, T., Morris, M., Calnan, M., Richards, P. & Hewlett, S. Patient perspective of measuring treatment efficacy: the rheumatoid arthritis patient priorities for pharmacologic interventions outcomes. Arthritis Care Res. 62, 647–656 (2010).

    Article  CAS  Google Scholar 

  156. Bower, J. E. Behavioral symptoms in patients with breast cancer and survivors. J. Clin. Oncol. 26, 768–777 (2008).

    Article  PubMed  Google Scholar 

  157. Treharne, G. J. et al. Predictors of fatigue over 1 year among people with rheumatoid arthritis. Psychol. Health Med. 13, 494–504 (2008).

    Article  CAS  PubMed  Google Scholar 

  158. Camacho, E. M., Verstappen, S. M., Chipping, J. & Symmons, D. P. Learned helplessness predicts functional disability, pain and fatigue in patients with recent-onset inflammatory polyarthritis. Rheumatology 52, 1233–1238 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Jacobsen, P. B., Andrykowski, M. A. & Thors, C. L. Relationship of catastrophizing to fatigue among women receiving treatment for breast cancer. J. Consult. Clin. Psychol. 72, 355–361 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Segal, B. M. et al. Pain in primary Sjögren syndrome: the role of catastrophizing and negative illness perceptions. Scand. J. Rheumatol. 43, 234–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  161. Hewlett, S. et al. Reducing arthritis fatigue impact: two-year randomised controlled trial of cognitive behavioural approaches by rheumatology teams (RAFT). Ann. Rheum. Dis. 78, 465–472 (2019).

    Article  PubMed  Google Scholar 

  162. Sanada, K. et al. Effects of mindfulness-based interventions on biomarkers and low-grade inflammation in patients with psychiatric disorders: a meta-analytic review. Int. J. Mol. Sci. 21, 2484 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  163. Nadarajah, M. & Goh, H. T. Post-stroke fatigue: a review on prevalence, correlates, measurement, and management. Top. Stroke Rehabil. 22, 208–220 (2015).

    Article  PubMed  Google Scholar 

  164. Sterling, P. Allostasis: a model of predictive regulation. Physiol. Behav. 106, 5–15 (2012).

    Article  CAS  PubMed  Google Scholar 

  165. Smets, E. M., Garssen, B., Bonke, B. & De Haes, J. C. The Multidimensional Fatigue Inventory (MFI) psychometric qualities of an instrument to assess fatigue. J. Psychom. Res. 39, 315–325 (1995).

    Article  CAS  Google Scholar 

  166. Chorus, A. M., Miedema, H. S., Boonen, A. & van der Linden, S. Quality of life and work in patients with rheumatoid arthritis and ankylosing spondylitis of working age. Ann. Rheum. Dis. 62, 1178–1184 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Barendregt, P. J. et al. Fatigue in primary Sjögren’s syndrome. Ann. Rheum. Dis. 57, 291–295 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Evers, A. W., Kraaimaat, F. W., Geenen, R., Jacobs, J. W. & Bijlsma, J. W. Stress-vulnerability factors as long-term predictors of disease activity in early rheumatoid arthritis. J. Psychosom. Res. 55, 293–302 (2003).

    Article  PubMed  Google Scholar 

  169. Zautra, A. J., Fasman, R., Parish, B. P. & Davis, M. C. Daily fatigue in women with osteoarthritis, rheumatoid arthritis, and fibromyalgia. Pain 128, 128–135 (2007).

    Article  PubMed  Google Scholar 

  170. Drewes, A. M. Pain and sleep disturbances with special reference to fibromyalgia and rheumatoid arthritis. Rheumatology 38, 1035–1038 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Wan-Fai Ng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks N. Basu, E. Choy and M. Irwin for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Recall period

The period over which people are asked to recall a prior event (for example, their fatigue experiences, thoughts and/or behaviours).

Sickness behaviour

Adaptive behaviours (such as social withdrawal, reduced activity and increased sleep) developed by animals and humans during an acute infection that are presumed to be beneficial for recovery and survival.

Anhedonia

Loss of interest in activities that were previously enjoyed and a decreased ability to feel pleasure.

Neural drive

The activation signals from the central nervous system delivered to the innervating motor neurons of the muscle.

Hypothalamic–pituitary–adrenal (HPA) axis

Refers to the connections and interactions between the hypothalamus, pituitary gland and adrenal glands.

Hypothalamic–pituitary–gonadal axis

Refers to the connections and interactions between the hypothalamus, pituitary gland and the gonads.

Hypothalamic–pituitary–thyroid axis

Refers to the connections and interactions between the hypothalamus, pituitary gland and the thyroid glands.

Dysautonomia

An umbrella term used to describe conditions attributable to malfunctioning of the autonomic nervous system.

Sleep disturbances

An umbrella term used to describe the spectrum of sleep disorders, such as difficulty falling asleep, frequent wakening and sleep apnoea.

Somatic focus

Heightened attention to physical symptoms.

Learned helplessness

An attributional style whereby a person perceives that they have little control over the events in their life and so responds passively to the challenges that they face.

Mindfulness

The ability to be fully aware of one’s thoughts, feelings and sensations without being overly reactive.

Socratic questioning

The technique of asking focused, probing, open-ended questions that encourage reflection.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davies, K., Dures, E. & Ng, WF. Fatigue in inflammatory rheumatic diseases: current knowledge and areas for future research. Nat Rev Rheumatol 17, 651–664 (2021). https://doi.org/10.1038/s41584-021-00692-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-021-00692-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing