Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Sodium channelopathies in neurodevelopmental disorders

An Author Correction to this article was published on 08 March 2021

This article has been updated

Abstract

The voltage-gated sodium channel α-subunit genes comprise a highly conserved gene family. Mutations of three of these genes, SCN1A, SCN2A and SCN8A, are responsible for a significant burden of neurological disease. Recent progress in identification and functional characterization of patient variants is generating new insights and novel approaches to therapy for these devastating disorders. Here we review the basic elements of sodium channel function that are used to characterize patient variants. We summarize a large body of work using global and conditional mouse mutants to characterize the in vivo roles of these channels. We provide an overview of the neurological disorders associated with mutations of the human genes and examples of the effects of patient mutations on channel function. Finally, we highlight therapeutic interventions that are emerging from new insights into mechanisms of sodium channelopathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolutionary conservation of human sodium channel genes.
Fig. 2: Channel properties frequently used to characterize patient mutations.
Fig. 3: Functional effects of patient mutations in SCN1A, SCN2A and SCN8A.
Fig. 4: Electrophysiological and cellular mechanisms underlying seizures in an in vivo mouse model of a human sodium channelopathy.

Similar content being viewed by others

Change history

References

  1. Holland, L. Z. & Ocampo Daza, D. A new look at an old question: when did the second whole genome duplication occur in vertebrate evolution? Genome Biol. 19, 209 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zakon, H. H. Adaptive evolution of voltage-gated sodium channels: the first 800 million years. Proc. Natl Acad. Sci. USA 109, 10619–10625 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lindy, A. S. et al. Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders. Epilepsia 59, 1062–1071 (2018).

    CAS  PubMed  Google Scholar 

  4. O’Malley, H. A. & Isom, L. L. Sodium channel beta subunits: emerging targets in channelopathies. Annu. Rev. Physiol. 77, 481–504 (2015).

    PubMed  PubMed Central  Google Scholar 

  5. Bouza, A. A. & Isom, L. L. Voltage-gated sodium channel beta subunits and their related diseases. Handb. Exp. Pharmacol. 246, 423–450 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zaman, T. et al. Mutations in SCN3A cause early infantile epileptic encephalopathy. Ann. Neurol. 83, 703–717 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Smith, R. S. et al. Sodium channel SCN3A (NaV1.3) regulation of human cerebral cortical folding and oral motor development. Neuron 99, 905–913 e907 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zaman, T. et al. SCN3A-related neurodevelopmental disorder: a spectrum of epilepsy and brain malformation. Ann. Neurol. https://doi.org/10.1002/ana.25809 (2020).

    Article  PubMed  Google Scholar 

  9. Raman, I. M., Sprunger, L. K., Meisler, M. H. & Bean, B. P. Altered subthreshold sodium currents and disrupted firing patterns in Purkinje neurons of Scn8a mutant mice. Neuron 19, 881–891 (1997).

    CAS  PubMed  Google Scholar 

  10. Pan, Y. & Cummins, T. R. Distinct functional alterations in SCN8A epilepsy mutant channels. J. Physiol. 598, 381–401 (2020).

    CAS  PubMed  Google Scholar 

  11. Liu, Y. et al. Neuronal mechanisms of mutations in SCN8A causing epilepsy or intellectual disability. Brain 142, 376–390 (2019).

    PubMed  Google Scholar 

  12. Tidball, A. M. et al. Variant-specific changes in persistent or resurgent sodium current in SCN8A-related epilepsy patient-derived neurons. Brain https://doi.org/10.1093/brain/awaa247 (2020).

    Article  PubMed  Google Scholar 

  13. Smith, M. R., Smith, R. D., Plummer, N. W., Meisler, M. H. & Goldin, A. L. Functional analysis of the mouse Scn8a sodium channel. J. Neurosci. 18, 6093–6102 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rush, A. M., Dib-Hajj, S. D. & Waxman, S. G. Electrophysiological properties of two axonal sodium channels, Nav1.2 and Nav1.6, expressed in mouse spinal sensory neurones. J. Physiol. 564, 803–815 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Calhoun, J. D. & Isom, L. L. The role of non-pore-forming beta subunits in physiology and pathophysiology of voltage-gated sodium channels. Handb. Exp. Pharmacol. 221, 51–89 (2014).

    CAS  PubMed  Google Scholar 

  16. Whitaker, W. R. et al. Comparative distribution of voltage-gated sodium channel proteins in human brain. Brain Res. Mol. Brain Res 88, 37–53 (2001).

    CAS  PubMed  Google Scholar 

  17. Boiko, T. et al. Functional specialization of the axon initial segment by isoform-specific sodium channel targeting. J. Neurosci. 23, 2306–2313 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Wart, A., Trimmer, J. S. & Matthews, G. Polarized distribution of ion channels within microdomains of the axon initial segment. J. Comp. Neurol. 500, 339–352 (2007).

    PubMed  Google Scholar 

  19. Royeck, M. et al. Role of axonal NaV1.6 sodium channels in action potential initiation of CA1 pyramidal neurons. J. Neurophysiol. 100, 2361–2380 (2008).

    CAS  PubMed  Google Scholar 

  20. Hu, W. et al. Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nat. Neurosci. 12, 996–1005 (2009).

    CAS  PubMed  Google Scholar 

  21. Lorincz, A. & Nusser, Z. Molecular identity of dendritic voltage-gated sodium channels. Science 328, 906–909 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Tian, C., Wang, K., Ke, W., Guo, H. & Shu, Y. Molecular identity of axonal sodium channels in human cortical pyramidal cells. Front. Cell Neurosci. 8, 297 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. Akin, E. J., Sole, L., Dib-Hajj, S. D., Waxman, S. G. & Tamkun, M. M. Preferential targeting of Nav1.6 voltage-gated Na+ channels to the axon initial segment during development. PLoS ONE 10, e0124397 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Akin, E. J. et al. Single-molecule imaging of Nav1.6 on the surface of hippocampal neurons reveals somatic nanoclusters. Biophys. J. 111, 1235–1247 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Van Wart, A. & Matthews, G. Impaired firing and cell-specific compensation in neurons lacking Nav1.6 sodium channels. J. Neurosci. 26, 7172–7180 (2006).

    PubMed  PubMed Central  Google Scholar 

  26. Mercer, J. N., Chan, C. S., Tkatch, T., Held, J. & Surmeier, D. J. Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. J. Neurosci. 27, 13552–13566 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu, W. et al. Distinct contributions of Nav1.6 and Nav1.2 in action potential initiation and backpropagation. Nat. Neurosci. 12, 996–1002 (2009).

    CAS  PubMed  Google Scholar 

  28. Katz, E. et al. Role of sodium channel subtype in action potential generation by neocortical pyramidal neurons. Proc. Natl Acad. Sci. USA 115, E7184–E7192 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Maurice, N., Tkatch, T., Meisler, M., Sprunger, L. K. & Surmeier, D. J. D1/D5 dopamine receptor activation differentially modulates rapidly inactivating and persistent sodium currents in prefrontal cortex pyramidal neurons. J. Neurosci. 21, 2268–2277 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Osorio, N. et al. Persistent Nav1.6 current at axon initial segments tunes spike timing of cerebellar granule cells. J. Physiol. 588, 651–670 (2010).

    CAS  PubMed  Google Scholar 

  31. Ogiwara, I. et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J. Neurosci. 27, 5903–5914 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Spratt, P. W. E. et al. The autism-associated gene Scn2a contributes to dendritic excitability and synaptic function in the prefrontal cortex. Neuron 103, 673–685 e675 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Caldwell, J. H., Schaller, K. L., Lasher, R. S., Peles, E. & Levinson, S. R. Sodium channel Nav1.6 is localized at nodes of Ranvier, dendrites, and synapses. Proc. Natl Acad. Sci. USA 97, 5616–5620 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Boiko, T. et al. Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 30, 91–104 (2001).

    CAS  PubMed  Google Scholar 

  35. Meisler, M. H., Kearney, J., Escayg, A., MacDonald, B. T. & Sprunger, L. K. Sodium channels and neurological disease: insights from Scn8a mutations in the mouse. Neuroscientist 7, 136–145 (2001).

    CAS  PubMed  Google Scholar 

  36. Westenbroek, R. E., Merrick, D. K. & Catterall, W. A. Differential subcellular localization of the RI and RII Na+ channel subtypes in central neurons. Neuron 3, 695–704 (1989).

    CAS  PubMed  Google Scholar 

  37. Jenkins, S. M. & Bennett, V. Ankyrin-G coordinates assembly of the spectrin-based membrane skeleton, voltage-gated sodium channels, and L1 CAMs at Purkinje neuron initial segments. J. Cell Biol. 155, 739–746 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lemaillet, G., Walker, B. & Lambert, S. Identification of a conserved ankyrin-binding motif in the family of sodium channel alpha subunits. J. Biol. Chem. 278, 27333–27339 (2003).

    CAS  PubMed  Google Scholar 

  39. Gasser, A. et al. An ankyrinG-binding motif is necessary and sufficient for targeting Nav1.6 sodium channels to axon initial segments and nodes of Ranvier. J. Neurosci. 32, 7232–7243 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. O’Brien, J. E. et al. Interaction of voltage-gated sodium channel Nav1.6 (SCN8A) with microtubule-associated protein Map1b. J. Biol. Chem. 287, 18459–18466 (2012).

    PubMed  PubMed Central  Google Scholar 

  41. Sole, L., Wagnon, J. L., Akin, E. J., Meisler, M. H. & Tamkun, M. M. The MAP1B binding domain of Nav1.6 is required for stable expression at the axon initial segment. J. Neurosci. 39, 4238–4251 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Sole, L. & Tamkun, M. M. Trafficking mechanisms underlying Nav channel subcellular localization in neurons. Channels 14, 1–17 (2020). This article provides a comprehensive up-to-date review of the cell biology of sodium channel subcellular transport and localization.

    PubMed  Google Scholar 

  43. Sharkey, L. M., Jones, J. M., Hedera, P. & Meisler, M. H. Evaluation of SCN8A as a candidate gene for autosomal dominant essential tremor. Parkinsonism Relat. Disord. 15, 321–323 (2009).

    PubMed  Google Scholar 

  44. Tate, S. K. et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc. Natl Acad. Sci. USA 102, 5507–5512 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Plummer, N. W., McBurney, M. W. & Meisler, M. H. Alternative splicing of the sodium channel SCN8A predicts a truncated two-domain protein in fetal brain and non-neuronal cells. J. Biol. Chem. 272, 24008–24015 (1997). In this study, a developmentally regulated poison exon in the Scn8a gene is identified.

    CAS  PubMed  Google Scholar 

  46. Sanders, S. J. et al. Progress in understanding and treating SCN2A-mediated disorders. Trends Neurosci. 41, 442–456 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Thompson, C. H., Ben-Shalom, R., Bender, K. J. & George, A. L. Alternative splicing potentiates dysfunction of early-onset epileptic encephalopathy SCN2A variants. J. Gen. Physiol. https://doi.org/10.1085/jgp.201912442 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Plummer, N. W. et al. Exon organization, coding sequence, physical mapping, and polymorphic intragenic markers for the human neuronal sodium channel gene SCN8A. Genomics 54, 287–296 (1998).

    CAS  PubMed  Google Scholar 

  49. O’Brien, J. E. et al. Rbfox proteins regulate alternative splicing of neuronal sodium channel SCN8A. Mol. Cell Neurosci. 49, 120–126 (2012). This study describes the regulation of alternative splicing of Scn8a by a neuronal transcription factor (see also Gehman et al. and Oh & Waxman).

    PubMed  Google Scholar 

  50. Zubovic, L., Baralle, M. & Baralle, F. E. Mutually exclusive splicing regulates the Nav 1.6 sodium channel function through a combinatorial mechanism that involves three distinct splicing regulatory elements and their ligands. Nucleic Acids Res. 40, 6255–6269 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Gehman, L. T. et al. The splicing regulator Rbfox2 is required for both cerebellar development and mature motor function. Genes Dev. 26, 445–460 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Oh, Y. & Waxman, S. G. Novel splice variants of the voltage-sensitive sodium channel alpha subunit. Neuroreport 9, 1267–1272 (1998).

    CAS  PubMed  Google Scholar 

  53. Kerr, N. C., Holmes, F. E. & Wynick, D. Novel mRNA isoforms of the sodium channels Nav1.2, Nav1.3 and Nav1.7 encode predicted two-domain, truncated proteins. Neuroscience 155, 797–808 (2008).

    CAS  PubMed  Google Scholar 

  54. Lim, K. H. et al. Antisense oligonucleotide modulation of non-productive alternative splicing upregulates gene expression. Nat. Commun. 11, 3501 (2020).

    PubMed  PubMed Central  Google Scholar 

  55. Yu, F. H. et al. Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat. Neurosci. 9, 1142–1149 (2006).

    CAS  PubMed  Google Scholar 

  56. Planells-Cases, R. et al. Neuronal death and perinatal lethality in voltage-gated sodium channel alpha(II)-deficient mice. Biophys. J. 78, 2878–2891 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Burgess, D. L. et al. Mutation of a new sodium channel gene, Scn8a, in the mouse mutant ‘motor endplate disease’. Nat. Genet. 10, 461–465 (1995).

    CAS  PubMed  Google Scholar 

  58. Han, S. et al. Autistic-like behaviour in Scn1a+/- mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489, 385–390 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Ito, S. et al. Mouse with Nav1.1 haploinsufficiency, a model for Dravet syndrome, exhibits lowered sociability and learning impairment. Neurobiol. Dis. 49, 29–40 (2013).

    CAS  PubMed  Google Scholar 

  60. Ogiwara, I. et al. Nav1.2 haplodeficiency in excitatory neurons causes absence-like seizures in mice. Commun. Biol. 1, 96 (2018).

    PubMed  PubMed Central  Google Scholar 

  61. Tatsukawa, T., Ogiwara, I., Mazaki, E., Shimohata, A. & Yamakawa, K. Impairments in social novelty recognition and spatial memory in mice with conditional deletion of Scn1a in parvalbumin-expressing cells. Neurobiol. Dis. 112, 24–34 (2018).

    CAS  PubMed  Google Scholar 

  62. Papale, L. A. et al. Heterozygous mutations of the voltage-gated sodium channel SCN8A are associated with spike-wave discharges and absence epilepsy in mice. Hum. Mol. Genet. 18, 1633–1641 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. McKinney, B. C., Chow, C. Y., Meisler, M. H. & Murphy, G. G. Exaggerated emotional behavior in mice heterozygous null for the sodium channel Scn8a (Nav1.6). Genes Brain Behav. 7, 629–638 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Miller, A. R., Hawkins, N. A., McCollom, C. E. & Kearney, J. A. Mapping genetic modifiers of survival in a mouse model of Dravet syndrome. Genes Brain Behav. 13, 163–172 (2014).

    CAS  PubMed  Google Scholar 

  65. Mulligan, M. K. et al. Identification of a functional non-coding variant in the GABAA receptor alpha2 subunit of the C57BL/6J mouse reference genome: major implications for neuroscience research. Front. Genet. 10, 188 (2019). This study shows that the widely used mouse strain C57BL/6J contains a splice site variant that reduces expression of Gabra2 by 75% and increases seizure susceptibility.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yu, W. et al. Gabra2 is a genetic modifier of Scn8a encephalopathy in the mouse. Epilepsia https://doi.org/10.1111/epi.16741 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Buchner, D. A., Trudeau, M. & Meisler, M. H. SCNM1, a putative RNA splicing factor that modifies disease severity in mice. Science 301, 967–969 (2003).

    CAS  PubMed  Google Scholar 

  68. Howell, V. M. et al. Evidence for a direct role of the disease modifier SCNM1 in splicing. Hum. Mol. Genet. 16, 2506–2516 (2007).

    CAS  PubMed  Google Scholar 

  69. Howell, V. M. et al. A targeted deleterious allele of the splicing factor SCNM1 in the mouse. Genetics 180, 1419–1427 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Wagnon, J. L. & Meisler, M. H. Recurrent and non-recurrent mutations of SCN8A in epileptic encephalopathy. Front. Neurol. 6, 104 (2015).

    PubMed  PubMed Central  Google Scholar 

  71. Hawkins, N. A., Martin, M. S., Frankel, W. N., Kearney, J. A. & Escayg, A. Neuronal voltage-gated ion channels are genetic modifiers of generalized epilepsy with febrile seizures plus. Neurobiol. Dis. 41, 655–660 (2011).

    CAS  PubMed  Google Scholar 

  72. Martin, M. S. et al. The voltage-gated sodium channel Scn8a is a genetic modifier of severe myoclonic epilepsy of infancy. Hum. Mol. Genet. 16, 2892–2899 (2007).

    CAS  PubMed  Google Scholar 

  73. Jorge, B. S. et al. Voltage-gated potassium channel KCNV2 (Kv8.2) contributes to epilepsy susceptibility. Proc. Natl Acad. Sci. USA 108, 5443–5448 (2011).

    PubMed  PubMed Central  Google Scholar 

  74. Mishra, V. et al. Scn2a deletion improves survival and brain-heart dynamics in the Kcna1-null mouse model of sudden unexpected death in epilepsy (SUDEP). Hum. Mol. Genet. 26, 2091–2103 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Epi25 Collaborative. Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals. Am. J. Hum. Genet. 105, 267–282 (2019). This article describes a large-scale study that identifies sodium channel variants in individuals with epilepsy.

    Google Scholar 

  76. de Lange, I. M. et al. Assessment of parental mosaicism in SCN1A-related epilepsy by single-molecule molecular inversion probes and next-generation sequencing. J. Med. Genet. 56, 75–80 (2019).

    PubMed  Google Scholar 

  77. Wu, Y. W. et al. Incidence of Dravet syndrome in a US population. Pediatrics 136, e1310–e1315 (2015).

    PubMed  PubMed Central  Google Scholar 

  78. Depienne, C. et al. Spectrum of SCN1A gene mutations associated with Dravet syndrome: analysis of 333 patients. J. Med. Genet. 46, 183–191 (2009).

    CAS  PubMed  Google Scholar 

  79. Meng, H. et al. The SCN1A mutation database: updating information and analysis of the relationships among genotype, functional alteration, and phenotype. Hum. Mutat. 36, 573–580 (2015).

    CAS  PubMed  Google Scholar 

  80. Dravet, C. The core dravet syndrome phenotype. Epilepsia 52, 3–9 (2011).

    PubMed  Google Scholar 

  81. Scheffer, I. E. & Nabbout, R. SCN1A-related phenotypes: epilepsy and beyond. Epilepsia 60, S17–S24 (2019).

    PubMed  Google Scholar 

  82. Guerrini, R. & Falchi, M. Dravet syndrome and SCN1A gene mutation related-epilepsies: cognitive impairment and its determinants. Dev. Med. Child. Neurol. 53, 11–15 (2011).

    PubMed  Google Scholar 

  83. Escayg, A. & Goldin, A. L. Sodium channel SCN1A and epilepsy: mutations and mechanisms. Epilepsia 51, 1650–1658 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Nissenkorn, A. et al. In vivo, in vitro and in silico correlations of four de novo SCN1A missense mutations. PLoS ONE 14, e0211901 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Kluckova, D. et al. A study among the genotype, functional alternations, and phenotype of 9 SCN1A mutations in epilepsy patients. Sci. Rep. 10, 10288 (2020).

    PubMed  PubMed Central  Google Scholar 

  86. Carvill, G. L. et al. Aberrant inclusion of a poison exon causes Dravet syndrome and related SCN1A-associated genetic epilepsies. Am. J. Hum. Genet. 103, 1022–1029 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cheah, C. S. et al. Specific deletion of NaV1.1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome. Proc. Natl Acad. Sci. USA 109, 14646–14651 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Ogiwara, I. et al. Nav1.1 haploinsufficiency in excitatory neurons ameliorates seizure-associated sudden death in a mouse model of Dravet syndrome. Hum. Mol. Genet. 22, 4784–4804 (2013). This study demonstrates interaction between genotypes of excitatory and inhibitory neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Stein, R. E., Kaplan, J. S., Li, J. & Catterall, W. A. Hippocampal deletion of NaV1.1 channels in mice causes thermal seizures and cognitive deficit characteristic of Dravet syndrome. Proc. Natl Acad. Sci. USA 116, 16571–16576 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kalume, F., Yu, F. H., Westenbroek, R. E., Scheuer, T. & Catterall, W. A. Reduced sodium current in Purkinje neurons from Nav1.1 mutant mice: implications for ataxia in severe myoclonic epilepsy in infancy. J. Neurosci. 27, 11065–11074 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Mistry, A. M. et al. Strain- and age-dependent hippocampal neuron sodium currents correlate with epilepsy severity in Dravet syndrome mice. Neurobiol. Dis. 65, 1–11 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Favero, M., Sotuyo, N. P., Lopez, E., Kearney, J. A. & Goldberg, E. M. A transient developmental window of fast-spiking interneuron dysfunction in a mouse model of Dravet syndrome. J. Neurosci. 38, 7912–7927 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Cooper, M. S. et al. Mortality in Dravet syndrome. Epilepsy Res. 128, 43–47 (2016).

    PubMed  Google Scholar 

  94. Frasier, C. R. et al. Channelopathy as a SUDEP biomarker in Dravet syndrome patient-derived cardiac myocytes. Stem Cell Rep. 11, 626–634 (2018).

    CAS  Google Scholar 

  95. Kuo, F. S., Cleary, C. M., LoTurco, J. J., Chen, X. & Mulkey, D. K. Disordered breathing in a mouse model of Dravet syndrome. eLife https://doi.org/10.7554/eLife.43387 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Bagnall, R. D., Crompton, D. E. & Semsarian, C. Genetic basis of sudden unexpected death in epilepsy. Front. Neurol. 8, 348 (2017).

    PubMed  PubMed Central  Google Scholar 

  97. Kim, Y. et al. Severe peri-ictal respiratory dysfunction is common in Dravet syndrome. J. Clin. Invest. 128, 1141–1153 (2018).

    PubMed  PubMed Central  Google Scholar 

  98. Escayg, A. et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat. Genet. 24, 343–345 (2000). This study provides the first description of pathogenic mutations of the human SCN1A gene.

    CAS  PubMed  Google Scholar 

  99. Spampanato, J., Escayg, A., Meisler, M. H. & Goldin, A. L. Functional effects of two voltage-gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus type 2. J. Neurosci. 21, 7481–7490 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Lossin, C., Wang, D. W., Rhodes, T. H., Vanoye, C. G. & George, A. L. Jr. Molecular basis of an inherited epilepsy. Neuron 34, 877–884 (2002).

    CAS  PubMed  Google Scholar 

  101. Kimura, K. et al. A missense mutation in SCN1A in brothers with severe myoclonic epilepsy in infancy (SMEI) inherited from a father with febrile seizures. Brain Dev. 27, 424–430 (2005).

    PubMed  Google Scholar 

  102. Shao, N. et al. Familial hemiplegic migraine type 3 (FHM3) with an. Front. Neurol. 9, 976 (2018).

    PubMed  PubMed Central  Google Scholar 

  103. Fan, C. et al. Early-onset familial hemiplegic migraine due to a novel SCN1A mutation. Cephalalgia 36, 1238–1247 (2016).

    PubMed  PubMed Central  Google Scholar 

  104. Dhifallah, S. et al. Gain of Function for the. Front. Mol. Neurosci. 11, 232 (2018).

    PubMed  PubMed Central  Google Scholar 

  105. Wolff, M. et al. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders. Brain 140, 1316–1336 (2017). This article describes the correlation of age of seizure onset with degree of impairment of Nav1.2 channel function.

    PubMed  Google Scholar 

  106. Ogiwara, I. et al. De novo mutations of voltage-gated sodium channel alphaII gene SCN2A in intracTABLE epilepsies. Neurology 73, 1046–1053 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Begemann, A. et al. Further corroboration of distinct functional features in SCN2A variants causing intellectual disability or epileptic phenotypes. Mol. Med. 25, 6 (2019).

    PubMed  PubMed Central  Google Scholar 

  108. Kearney, J. A. et al. A gain-of-function mutation in the sodium channel gene Scn2a results in seizures and behavioral abnormalities. Neuroscience 102, 307–317 (2001).

    CAS  PubMed  Google Scholar 

  109. Kile, K. B., Tian, N. & Durand, D. M. Scn2a sodium channel mutation results in hyperexcitability in the hippocampus in vitro. Epilepsia 49, 488–499 (2008).

    CAS  PubMed  Google Scholar 

  110. Kamiya, K. et al. A nonsense mutation of the sodium channel gene SCN2A in a patient with intractable epilepsy and mental decline. J. Neurosci. 24, 2690–2698 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Lossin, C., Shi, X., Rogawski, M. A. & Hirose, S. Compromised function in the Nav1.2 Dravet syndrome mutation R1312T. Neurobiol. Dis. 47, 378–384 (2012).

    CAS  PubMed  Google Scholar 

  112. Wolff, M., Brunklaus, A. & Zuberi, S. M. Phenotypic spectrum and genetics of SCN2A-related disorders, treatment options, and outcomes in epilepsy and beyond. Epilepsia 60, S59–S67 (2019).

    PubMed  Google Scholar 

  113. Heron, S. E. et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet 360, 851–852 (2002).

    CAS  PubMed  Google Scholar 

  114. Reynolds, C., King, M. D. & Gorman, K. M. The phenotypic spectrum of SCN2A-related epilepsy. Eur. J. Paediatr. Neurol. 24, 117–122 (2020).

    PubMed  Google Scholar 

  115. Scalmani, P. et al. Effects in neocortical neurons of mutations of the Nav1.2 Na+ channel causing benign familial neonatal-infantile seizures. J. Neurosci. 26, 10100–10109 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Liao, Y. et al. Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain 133, 1403–1414 (2010).

    PubMed  Google Scholar 

  117. Ben-Shalom, R. et al. Opposing effects on NaV1.2 function underlie differences between SCN2A variants observed in individuals with autism spectrum disorder or infantile seizures. Biol. Psychiatry 82, 224–232 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Buxbaum, J. D. et al. The autism sequencing consortium: large-scale, high-throughput sequencing in autism spectrum disorders. Neuron 76, 1052–1056 (2012).

    CAS  PubMed  Google Scholar 

  119. Tatsukawa, T. et al. Scn2a haploinsufficient mice display a spectrum of phenotypes affecting anxiety, sociability, memory flexibility and ampakine CX516 rescues their hyperactivity. Mol. Autism 10, 15 (2019).

    PubMed  PubMed Central  Google Scholar 

  120. Schwarz, N. et al. Clinical and genetic spectrum of SCN2A-associated episodic ataxia. Eur. J. Paediatr. Neurol. 23, 438–447 (2019).

    CAS  PubMed  Google Scholar 

  121. Liao, Y. et al. SCN2A mutation associated with neonatal epilepsy, late-onset episodic ataxia, myoclonus, and pain. Neurology 75, 1454–1458 (2010).

    CAS  PubMed  Google Scholar 

  122. Schattling, B. et al. Activity of NaV1.2 promotes neurodegeneration in an animal model of multiple sclerosis. JCI Insight 1, e89810 (2016).

    PubMed  PubMed Central  Google Scholar 

  123. Meisler, M. H. et al. SCN8A encephalopathy: research progress and prospects. Epilepsia 57, 1027–1035 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Johannesen, K. M. et al. Early mortality in SCN8A-related epilepsies. Epilepsy Res. 143, 79–81 (2018).

    PubMed  Google Scholar 

  125. Larsen, J. et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology 84, 480–489 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Meisler, M. H. SCN8A encephalopathy: mechanisms and models. Epilepsia 60, S86–S91 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Veeramah, K. R. et al. De novo pathogenic SCN8A mutation identified by whole-genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am. J. Hum. Genet. 90, 502–510 (2012). This work provides the first demonstration of a GOF mutation in human SCN8A in a patient with DEE.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Lopez-Santiago, L. F. et al. Neuronal hyperexcitability in a mouse model of SCN8A epileptic encephalopathy. Proc. Natl Acad. Sci. USA 114, 2383–2388 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Ottolini, M., Barker, B. S., Gaykema, R. P., Meisler, M. H. & Patel, M. K. Aberrant sodium channel currents and hyperexcitability of medial entorhinal cortex neurons in a mouse model of SCN8A encephalopathy. J. Neurosci. 37, 7643–7655 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Wagnon, J. L. et al. Pathogenic mechanism of recurrent mutations of SCN8A in epileptic encephalopathy. Ann. Clin. Transl. Neurol. 3, 114–123 (2015).

    PubMed  PubMed Central  Google Scholar 

  131. Nguyen, H. M. & Goldin, A. L. Sodium channel carboxyl-terminal residue regulates fast inactivation. J. Biol. Chem. 285, 9077–9089 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Bunton-Stasyshyn, R. K. A. et al. Prominent role of forebrain excitatory neurons in SCN8A encephalopathy. Brain 142, 362–375 (2019).

    PubMed  PubMed Central  Google Scholar 

  133. Gardella, E. et al. The phenotype of SCN8A developmental and epileptic encephalopathy. Neurology 91, e1112–e1124 (2018).

    PubMed  Google Scholar 

  134. Wagnon, J. L. et al. Partial loss-of-function of sodium channel SCN8A in familial isolated myoclonus. Hum. Mutat. 39, 965–969 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Kearney, J. A. et al. Molecular and pathological effects of a modifier gene on deficiency of the sodium channel Scn8a (Nav1.6). Hum. Mol. Genet. 11, 2765–2775 (2002).

    CAS  PubMed  Google Scholar 

  136. O’Brien, J. E. & Meisler, M. H. Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front. Genet. 4, 213 (2013).

    PubMed  PubMed Central  Google Scholar 

  137. Jones, J. M. et al. Single amino acid deletion in transmembrane segment D4S6 of sodium channel Scn8a (Nav1.6) in a mouse mutant with a chronic movement disorder. Neurobiol. Dis. 89, 36–45 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Levin, S. I. et al. Impaired motor function in mice with cell-specific knockout of sodium channel Scn8a (NaV1.6) in cerebellar Purkinje neurons and granule cells. J. Neurophysiol. 96, 785–793 (2006).

    CAS  PubMed  Google Scholar 

  139. Trudeau, M. M., Dalton, J. C., Day, J. W., Ranum, L. P. & Meisler, M. H. Heterozygosity for a protein truncation mutation of sodium channel SCN8A in a patient with cerebellar atrophy, ataxia, and mental retardation. J. Med. Genet. 43, 527–530 (2006).

    CAS  PubMed  Google Scholar 

  140. Wagnon, J. L. et al. Loss-of-function variants of SCN8A in intellectual disability without seizures. Neurol. Genet. 3, e170 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Blanchard, M. G. et al. De novo gain-of-function and loss-of-function mutations of SCN8A in patients with intellectual disabilities and epilepsy. J. Med. Genet. 52, 330–337 (2015).

    CAS  PubMed  Google Scholar 

  142. Makinson, C. D. et al. Regulation of thalamic and cortical network synchrony by Scn8a. Neuron 93, 1165–1179 e1166 (2017). This article moves beyond individual channel abnormalities to identify circuit-level dysfunction.

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Karczewski, K. J. et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv https://doi.org/10.1101/531210 (2019).

    Article  Google Scholar 

  144. Anderson, L. L., Hawkins, N. A., Thompson, C. H., Kearney, J. A. & George, A. L. Jr. Unexpected efficacy of a novel sodium channel modulator in Dravet syndrome. Sci. Rep. 7, 1682 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Wengert, E. R., Saga, A. U., Panchal, P. S., Barker, B. S. & Patel, M. K. Prax330 reduces persistent and resurgent sodium channel currents and neuronal hyperexcitability of subiculum neurons in a mouse model of SCN8A epileptic encephalopathy. Neuropharmacology 158, 107699 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Baker, E. M. et al. The novel sodium channel modulator GS-458967 (GS967) is an effective treatment in a mouse model of SCN8A encephalopathy. Epilepsia 59, 1166–1176 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Anderson, L. L. et al. Antiepileptic activity of preferential inhibitors of persistent sodium current. Epilepsia 55, 1274–1283 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Hawkins, N. A., Zachwieja, N. J., Miller, A. R., Anderson, L. L. & Kearney, J. A. Fine mapping of a Dravet syndrome modifier locus on mouse chromosome 5 and candidate gene analysis by RNA-Seq. PLoS Genet. 12, e1006398 (2016).

    PubMed  PubMed Central  Google Scholar 

  149. Richards, K. L. et al. Selective NaV1.1 activation rescues Dravet syndrome mice from seizures and premature death. Proc. Natl Acad. Sci. USA 115, E8077–E8085 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Finkel, R. S. et al. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med. 377, 1723–1732 (2017).

    CAS  PubMed  Google Scholar 

  151. Kim, J. et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N. Engl. J. Med. 381, 1644–1652 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Han, Z. et al. Antisense oligonucleotides increase Scn1a expression and reduce seizures and SUDEP incidence in a mouse model of Dravet syndrome. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaz6100 (2020). This study is a preclinical demonstration of treatment of Dravet syndrome with antisense oligonucleotides that targets splicing of a poison exon and elevate the level of full-length transcript.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Lenk, G. M. et al. Scn8a antisense oligonucleotide is protective in mouse models of SCN8A encephalopathy and Dravet syndrome. Ann. Neurol. https://doi.org/10.1002/ana.25676 (2020). This study describes preclinical treatment of a mouse model of SCN8A encephalopathy with an antisense oligonucleotide.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Colasante, G. et al. dCas9-based Scn1a gene activation restores inhibitory interneuron excitability and attenuates seizures in Dravet syndrome mice. Mol. Ther. 28, 235–253 (2020).

    CAS  PubMed  Google Scholar 

  155. Yamagata, T. et al. CRISPR/dCas9-based Scn1a gene activation in inhibitory neurons ameliorates epileptic and behavioral phenotypes of Dravet syndrome model mice. Neurobiol. Dis. 141, 104954 (2020).

    CAS  PubMed  Google Scholar 

  156. Vanoye, C. G. et al. High-throughput functional evaluation of KCNQ1 decrypts variants of unknown significance. Circ. Genom. Precis. Med. 11, e002345 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Glazer, A. M. et al. High-throughput reclassification of SCN5A variants. Am. J. Hum. Genet. 107, 111–123 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Glazer, A. M. et al. Deep mutational scan of an SCN5A voltage sensor. Circ. Genom. Precis. Med. 13, e002786 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. de Kovel, C. G. et al. Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy. Epilepsy Res. 108, 1511–1518 (2014).

    PubMed  PubMed Central  Google Scholar 

  160. Wengert, E. R. et al. Biallelic inherited SCN8A variants, a rare cause of SCN8A-related developmental and epileptic encephalopathy. Epilepsia 60, 2277–2285 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Mis, M. A. et al. Resilience to pain: a peripheral component identified using induced pluripotent stem cells and dynamic clamp. J. Neurosci. 39, 382–392 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Liautard, C. et al. Hippocampal hyperexcitability and specific epileptiform activity in a mouse model of Dravet syndrome. Epilepsia 54, 1251–1261 (2013).

    CAS  PubMed  Google Scholar 

  163. Makinson, C. D., Tanaka, B. S., Lamar, T., Goldin, A. L. & Escayg, A. Role of the hippocampus in Nav1.6 (Scn8a) mediated seizure resistance. Neurobiol. Dis. 68, 16–25 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Rubinstein, M. et al. Dissecting the phenotypes of Dravet syndrome by gene deletion. Brain 138, 2219–2233 (2015).

    PubMed  PubMed Central  Google Scholar 

  165. Jansen, N. A., Dehghani, A., Breukel, C., Tolner, E. A. & van den Maagdenberg, A. Focal and generalized seizure activity after local hippocampal or cortical ablation of NaV 1.1 channels in mice. Epilepsia 61, e30–e36 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Miyamoto, H. et al. Impaired cortico-striatal excitatory transmission triggers epilepsy. Nat. Commun. 10, 1917 (2019). This study demonstrates impaired corticostriatal excitatory transmission underlying absence seizures in Scn2a-haploinsufficient mice.

    PubMed  PubMed Central  Google Scholar 

  167. Woodruff-Pak, D. S., Green, J. T., Levin, S. I. & Meisler, M. H. Inactivation of sodium channel Scn8a (Nav1.6) in Purkinje neurons impairs learning in morris water maze and delay but not trace eyeblink classical conditioning. Behav. Neurosci. 120, 229–240 (2006).

    PubMed  Google Scholar 

  168. Wong, J. C. et al. Selective targeting of Scn8a prevents seizure development in a mouse model of mesial temporal lobe epilepsy. Sci. Rep. 8, 126 (2018).

    PubMed  PubMed Central  Google Scholar 

  169. Patel, R. R., Barbosa, C., Brustovetsky, T., Brustovetsky, N. & Cummins, T. R. Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol. Brain 139, 2164–2181 (2016).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The preparation of this Review was supported by US Public Health Service grant R01 NS34509. The authors thank G. M. Lenk and L. L. Isom for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Miriam H. Meisler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks K. Bender and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Databases with information about patient variants. SCN1A: https://www.scn1a.net/

SCN2A: https://www.dropbox.com/s/gisihairans4dpa/SUP_SCN2A_TABLE_S1.xlsx?dl=0

SCN8A: https://scn8a.net

Glossary

Loss-of-function (LOF) variants

Complete loss-of-function (LOF) variants abolish channel function. They can also be partial, where a reduced level of normal channel function is retained.

Poison exons

Alternatively spliced exons that result in protein truncation, for example, due to the presence of an in-frame stop codon.

Haploinsufficient

A gene for which 50% of normal expression is insufficient and results in disease.

Gain-of-function variant

A missense variant with altered amino acid sequence that results in abnormal channel function.

Modifier genes

Unrelated genes whose expression can modify the severity of a disorder.

Orthologues

Evolutionarily corresponding genes in two species, for example mouse Scn1a and human SCN1A.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meisler, M.H., Hill, S.F. & Yu, W. Sodium channelopathies in neurodevelopmental disorders. Nat Rev Neurosci 22, 152–166 (2021). https://doi.org/10.1038/s41583-020-00418-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-00418-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing