Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cell migration promotes dynamic cellular interactions to control cerebral cortex morphogenesis

Abstract

The cerebral cortex is an evolutionarily advanced brain structure that computes higher motor, sensory and cognitive functions. Its complex organization reflects the exquisite cell migration and differentiation patterns that take place during embryogenesis. Recent evidence supports an essential role for cell migration in shaping the developing cerebral cortex via direct cellular contacts and spatially organized diffusible cues that regulate the establishment of its cytoarchitecture and function. Identifying the nature of the crosstalk between cell populations at play during brain development is key to understanding how cerebral cortical morphogenesis proceeds in health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Migration strategies used by neural cells to colonize the mouse developing cerebral cortex.
Fig. 2: Cellular crosstalk shapes cerebral cortical morphogenesis.
Fig. 3: Innovative tools to study neuronal migration of human-derived neurons.

Similar content being viewed by others

References

  1. Marin, O. & Rubenstein, J. L. Cell migration in the forebrain. Annu. Rev. Neurosci. 26, 441–483 (2003).

    CAS  PubMed  Google Scholar 

  2. Heng, J. I., Chariot, A. & Nguyen, L. Molecular layers underlying cytoskeletal remodelling during cortical development. Trends Neurosci. 33, 38–47 (2010).

    CAS  PubMed  Google Scholar 

  3. Kessaris, N. et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. 9, 173–179 (2006).

    CAS  PubMed  Google Scholar 

  4. Thion, M. S. & Garel, S. On place and time: microglia in embryonic and perinatal brain development. Curr. Opin. Neurobiol. 47, 121–130 (2017).

    CAS  PubMed  Google Scholar 

  5. Silva, C. G. et al. Cell-intrinsic control of interneuron migration drives cortical morphogenesis. Cell 172, 1063–1078 (2018). This work demonstrates the existence of a crosstalk between migrating cINs and PN progenitors to control the output of upper-layer neurons.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457–462 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mi, D. et al. Early emergence of cortical interneuron diversity in the mouse embryo. Science 360, 81–85 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hamasaki, T., Goto, S., Nishikawa, S. & Ushio, Y. A role of netrin-1 in the formation of the subcortical structure striatum: repulsive action on the migration of late-born striatal neurons. J. Neurosci. 21, 4272–4280 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Marin, O. et al. Directional guidance of interneuron migration to the cerebral cortex relies on subcortical Slit1/2-independent repulsion and cortical attraction. Development 130, 1889–1901 (2003).

    CAS  PubMed  Google Scholar 

  10. Zimmer, G. et al. Ephrin-A5 acts as a repulsive cue for migrating cortical interneurons. Eur. J. Neurosci. 28, 62–73 (2008).

    PubMed  Google Scholar 

  11. Metin, C., Baudoin, J. P., Rakic, S. & Parnavelas, J. G. Cell and molecular mechanisms involved in the migration of cortical interneurons. Eur. J. Neurosci. 23, 894–900 (2006).

    PubMed  Google Scholar 

  12. Lim, L. et al. Optimization of interneuron function by direct coupling of cell migration and axonal targeting. Nat. Neurosci. 21, 920–931 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Flames, N. et al. Short- and long-range attraction of cortical GABAergic interneurons by neuregulin-1. Neuron 44, 251–261 (2004).

    CAS  PubMed  Google Scholar 

  14. Tiveron, M. C. et al. Molecular interaction between projection neuron precursors and invading interneurons via stromal-derived factor 1 (CXCL12)/CXCR4 signaling in the cortical subventricular zone/intermediate zone. J. Neurosci. 26, 13273–13278 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Martini, F. J. et al. Biased selection of leading process branches mediates chemotaxis during tangential neuronal migration. Development 136, 41–50 (2009).

    CAS  PubMed  Google Scholar 

  16. Nadarajah, B., Brunstrom, J. E., Grutzendler, J., Wong, R. O. & Pearlman, A. L. Two modes of radial migration in early development of the cerebral cortex. Nat. Neurosci. 4, 143–150 (2001).

    CAS  PubMed  Google Scholar 

  17. Baudoin, J. P. et al. Tangentially migrating neurons assemble a primary cilium that promotes their reorientation to the cortical plate. Neuron 76, 1108–1122 (2012).

    CAS  PubMed  Google Scholar 

  18. Higginbotham, H. et al. Arl13b in primary cilia regulates the migration and placement of interneurons in the developing cerebral cortex. Dev. Cell 23, 925–938 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tanaka, D. H., Maekawa, K., Yanagawa, Y., Obata, K. & Murakami, F. Multidirectional and multizonal tangential migration of GABAergic interneurons in the developing cerebral cortex. Development 133, 2167–2176 (2006).

    CAS  PubMed  Google Scholar 

  20. Bellion, A., Baudoin, J. P., Alvarez, C., Bornens, M. & Metin, C. Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J. Neurosci. 25, 5691–5699 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Telley, L. et al. Sequential transcriptional waves direct the differentiation of newborn neurons in the mouse neocortex. Science 351, 1443–1446 (2016).

    CAS  PubMed  Google Scholar 

  22. Tabata, H. & Nakajima, K. Multipolar migration: the third mode of radial neuronal migration in the developing cerebral cortex. J. Neurosci. 23, 9996–10001 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Noctor, S. C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A. R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci. 7, 136–144 (2004).

    CAS  PubMed  Google Scholar 

  24. LoTurco, J. J. & Bai, J. The multipolar stage and disruptions in neuronal migration. Trends Neurosci. 29, 407–413 (2006).

    CAS  PubMed  Google Scholar 

  25. Kawauchi, T. et al. Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron 67, 588–602 (2010).

    CAS  PubMed  Google Scholar 

  26. Barber, M. & Pierani, A. Tangential migration of glutamatergic neurons and cortical patterning during development: lessons from Cajal-Retzius cells. Dev. Neurobiol. 76, 847–881 (2016).

    CAS  PubMed  Google Scholar 

  27. Pedraza, M., Hoerder-Suabedissen, A., Albert-Maestro, M. A., Molnar, Z. & De Carlos, J. A. Extracortical origin of some murine subplate cell populations. Proc. Natl Acad. Sci. USA 111, 8613–8618 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Teissier, A. et al. A novel transient glutamatergic population migrating from the pallial-subpallial boundary contributes to neocortical development. J. Neurosci. 30, 10563–10574 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Bayer, S. A. & Altman, J. Development of layer I and the subplate in the rat neocortex. Exp. Neurol. 107, 48–62 (1990).

    CAS  PubMed  Google Scholar 

  30. Hoerder-Suabedissen, A. & Molnar, Z. Molecular diversity of early-born subplate neurons. Cereb. Cortex 23, 1473–1483 (2013).

    PubMed  Google Scholar 

  31. Allendoerfer, K. L. & Shatz, C. J. The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu. Rev. Neurosci. 17, 185–218 (1994).

    CAS  PubMed  Google Scholar 

  32. Molnar, Z., Adams, R. & Blakemore, C. Mechanisms underlying the early establishment of thalamocortical connections in the rat. J. Neurosci. 18, 5723–5745 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kanold, P. O., Kara, P., Reid, R. C. & Shatz, C. J. Role of subplate neurons in functional maturation of visual cortical columns. Science 301, 521–525 (2003).

    CAS  PubMed  Google Scholar 

  34. McConnell, S. K., Ghosh, A. & Shatz, C. J. Subplate pioneers and the formation of descending connections from cerebral cortex. J. Neurosci. 14, 1892–1907 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhao, C., Kao, J. P. & Kanold, P. O. Functional excitatory microcircuits in neonatal cortex connect thalamus and layer 4. J. Neurosci. 29, 15479–15488 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Meinecke, D. L. & Rakic, P. Expression of GABA and GABAA receptors by neurons of the subplate zone in developing primate occipital cortex: evidence for transient local circuits. J. Comp. Neurol. 317, 91–101 (1992).

    CAS  PubMed  Google Scholar 

  37. Kostovic, I. & Rakic, P. Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J. Comp. Neurol. 297, 441–470 (1990).

    CAS  PubMed  Google Scholar 

  38. Woo, T. U., Beale, J. M. & Finlay, B. L. Dual fate of subplate neurons in a rodent. Cereb. Cortex 1, 433–443 (1991).

    CAS  PubMed  Google Scholar 

  39. Hevner, R. F., Neogi, T., Englund, C., Daza, R. A. & Fink, A. Cajal-Retzius cells in the mouse: transcription factors, neurotransmitters, and birthdays suggest a pallial origin. Brain Res. Dev. Brain Res. 141, 39–53 (2003).

    CAS  PubMed  Google Scholar 

  40. Bielle, F. et al. Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat. Neurosci. 8, 1002–1012 (2005).

    CAS  PubMed  Google Scholar 

  41. Villar-Cervino, V. et al. Contact repulsion controls the dispersion and final distribution of Cajal-Retzius cells. Neuron 77, 457–471 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Barber, M. et al. Migration speed of Cajal-Retzius Cells modulated by vesicular trafficking controls the size of higher-order cortical areas. Curr. Biol. 25, 2466–2478 (2015). This study shows that vesicular trafficking controls the cortical distribution of distinct CR cells, which influences the size and wiring of different cortical areas.

    CAS  PubMed  Google Scholar 

  43. Meyer, G. & Gonzalez-Gomez, M. The heterogeneity of human Cajal-Retzius neurons. Semin. Cell Dev. Biol. 76, 101–111 (2018).

    CAS  PubMed  Google Scholar 

  44. Meyer, G. & Gonzalez-Gomez, M. The subpial granular layer and transient versus persisting Cajal-Retzius neurons of the fetal human cortex. Cereb. Cortex 28, 2043–2058 (2018).

    PubMed  Google Scholar 

  45. Abraham, H. & Meyer, G. Reelin-expressing neurons in the postnatal and adult human hippocampal formation. Hippocampus 13, 715–727 (2003).

    CAS  PubMed  Google Scholar 

  46. Ginhoux, F. & Garel, S. The mysterious origins of microglia. Nat. Neurosci. 21, 897–899 (2018).

    CAS  PubMed  Google Scholar 

  47. Schafer, D. P. et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74, 691–705 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Squarzoni, P. et al. Microglia modulate wiring of the embryonic forebrain. Cell Rep. 8, 1271–1279 (2014). This work suggests that the embryonic invasion of the brain by microglia controls the wiring of some forebrain circuits by affecting axonal growth and interneuron positioning.

    CAS  PubMed  Google Scholar 

  49. Arnold, T. & Betsholtz, C. The importance of microglia in the development of the vasculature in the central nervous system. Vasc. Cell 5, 4 (2013).

    PubMed  PubMed Central  Google Scholar 

  50. Ashwell, K. The distribution of microglia and cell death in the fetal rat forebrain. Brain Res. Dev. Brain Res. 58, 1–12 (1991).

    CAS  PubMed  Google Scholar 

  51. Cunningham, C. L., Martinez-Cerdeno, V. & Noctor, S. C. Microglia regulate the number of neural precursor cells in the developing cerebral cortex. J. Neurosci. 33, 4216–4233 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Sierra, A. et al. Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7, 483–495 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Casano, A. M., Albert, M. & Peri, F. Developmental apoptosis mediates entry and positioning of microglia in the zebrafish brain. Cell Rep. 16, 897–906 (2016).

    CAS  PubMed  Google Scholar 

  54. Swinnen, N. et al. Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo. Glia 61, 150–163 (2013).

    PubMed  Google Scholar 

  55. Arno, B. et al. Neural progenitor cells orchestrate microglia migration and positioning into the developing cortex. Nat. Commun. 5, 5611 (2014).

    CAS  PubMed  Google Scholar 

  56. Xavier, A. L., Menezes, J. R., Goldman, S. A. & Nedergaard, M. Fine-tuning the central nervous system: microglial modelling of cells and synapses. Phil. Trans. R. Soc. B 369, 20130593 (2014).

    PubMed  PubMed Central  Google Scholar 

  57. Frost, E. E., Zhou, Z., Krasnesky, K. & Armstrong, R. C. Initiation of oligodendrocyte progenitor cell migration by a PDGF-A activated extracellular regulated kinase (ERK) signaling pathway. Neurochem. Res. 34, 169–181 (2009).

    CAS  PubMed  Google Scholar 

  58. Choe, Y., Huynh, T. & Pleasure, S. J. Migration of oligodendrocyte progenitor cells is controlled by transforming growth factor beta family proteins during corticogenesis. J. Neurosci. 34, 14973–14983 (2014).

    PubMed  PubMed Central  Google Scholar 

  59. Tsai, H. H. et al. Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 351, 379–384 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Paez, P. M. et al. Golli myelin basic proteins regulate oligodendroglial progenitor cell migration through voltage-gated Ca2+ influx. J. Neurosci. 29, 6663–6676 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Marques, S. et al. Transcriptional convergence of oligodendrocyte lineage progenitors during development. Dev. Cell 46, 504–517 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Pollen, A. A. et al. Molecular identity of human outer radial glia during cortical development. Cell 163, 55–67 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Krubitzer, L. The magnificent compromise: cortical field evolution in mammals. Neuron 56, 201–208 (2007).

    CAS  PubMed  Google Scholar 

  64. Hasenpusch-Theil, K., Watson, J. A. & Theil, T. Direct interactions between Gli3, Wnt8b, and Fgfs underlie patterning of the dorsal telencephalon. Cereb. Cortex 27, 1137–1148 (2017).

    PubMed  Google Scholar 

  65. Griveau, A. et al. A novel role for Dbx1-derived Cajal-Retzius cells in early regionalization of the cerebral cortical neuroepithelium. PLOS Biol. 8, e1000440 (2010).

    PubMed  PubMed Central  Google Scholar 

  66. Dehay, C., Horsburgh, G., Berland, M., Killackey, H. & Kennedy, H. Maturation and connectivity of the visual cortex in monkey is altered by prenatal removal of retinal input. Nature 337, 265–267 (1989).

    CAS  PubMed  Google Scholar 

  67. Polleux, F., Dehay, C., Goffinet, A. & Kennedy, H. Pre- and post-mitotic events contribute to the progressive acquisition of area-specific connectional fate in the neocortex. Cereb. Cortex 11, 1027–1039 (2001).

    CAS  PubMed  Google Scholar 

  68. Borello, U., Kennedy, H. & Dehay, C. The logistics of afferent cortical specification in mice and men. Semin. Cell Dev. Biol. 76, 112–119 (2017).

    PubMed  Google Scholar 

  69. Vue, T. Y. et al. Thalamic control of neocortical area formation in mice. J. Neurosci. 33, 8442–8453 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Chou, S. J. et al. Geniculocortical input drives genetic distinctions between primary and higher-order visual areas. Science 340, 1239–1242 (2013).

    CAS  PubMed  Google Scholar 

  71. Garel, S., Yun, K., Grosschedl, R. & Rubenstein, J. L. The early topography of thalamocortical projections is shifted in Ebf1 and Dlx1/2 mutant mice. Development 129, 5621–5634 (2002).

    CAS  PubMed  Google Scholar 

  72. Egusa, S. F. et al. Classic cadherin expressions balance postnatal neuronal positioning and dendrite dynamics to elaborate the specific cytoarchitecture of the mouse cortical area. Neurosci. Res. 105, 49–64 (2016).

    CAS  PubMed  Google Scholar 

  73. Ohtaka-Maruyama, C. et al. Synaptic transmission from subplate neurons controls radial migration of neocortical neurons. Science 360, 313–317 (2018).

    CAS  PubMed  Google Scholar 

  74. Tabata, H. & Nakajima, K. Neurons tend to stop migration and differentiate along the cortical internal plexiform zones in the Reelin signal-deficient mice. J. Neurosci. Res. 69, 723–730 (2002).

    CAS  PubMed  Google Scholar 

  75. Rice, D. S. et al. Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125, 3719–3729 (1998).

    CAS  PubMed  Google Scholar 

  76. Jossin, Y. & Cooper, J. A. Reelin, Rap1 and N-cadherin orient the migration of multipolar neurons in the developing neocortex. Nat. Neurosci. 14, 697–703 (2011). This work shows that reelin released by CR cells controls the repolarization of multipolar neurons in the SVZ and/or intermediate zone, allowing them to initiate locomotion on RG fibres.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Ogawa, M. et al. The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14, 899–912 (1995).

    CAS  PubMed  Google Scholar 

  78. Yoshida, M., Assimacopoulos, S., Jones, K. R. & Grove, E. A. Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order. Development 133, 537–545 (2006).

    CAS  PubMed  Google Scholar 

  79. Kupferman, J. V. et al. Reelin signaling specifies the molecular identity of the pyramidal neuron distal dendritic compartment. Cell 158, 1335–1347 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Hevner, R. F., Daza, R. A., Englund, C., Kohtz, J. & Fink, A. Postnatal shifts of interneuron position in the neocortex of normal and reeler mice: evidence for inward radial migration. Neuroscience 124, 605–618 (2004).

    CAS  PubMed  Google Scholar 

  81. Anstotz, M. et al. Morphology, input-output relations and synaptic connectivity of Cajal-Retzius cells in layer 1 of the developing neocortex of CXCR4-EGFP mice. Brain Struct. Funct. 219, 2119–2139 (2014).

    PubMed  Google Scholar 

  82. Opris, I., Chang, S. & Noga, B. R. What is the evidence for inter-laminar integration in a prefrontal cortical minicolumn? Front. Neuroanat. 11, 116 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. Rakic, P. Radial versus tangential migration of neuronal clones in the developing cerebral cortex. Proc. Natl Acad. Sci. USA 92, 11323–11327 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Dimidschstein, J. et al. Ephrin-B1 controls the columnar distribution of cortical pyramidal neurons by restricting their tangential migration. Neuron 79, 1123–1135 (2013).

    CAS  PubMed  Google Scholar 

  85. Lodato, S. et al. Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex. Neuron 69, 763–779 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Xue, M., Atallah, B. V. & Scanziani, M. Equalizing excitation-inhibition ratios across visual cortical neurons. Nature 511, 596–600 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cobos, I. et al. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat. Neurosci. 8, 1059–1068 (2005).

    CAS  PubMed  Google Scholar 

  88. Marin, O. Interneuron dysfunction in psychiatric disorders. Nat. Rev. Neurosci. 13, 107–120 (2012).

    CAS  PubMed  Google Scholar 

  89. Southwell, D. G. et al. Intrinsically determined cell death of developing cortical interneurons. Nature 491, 109–113 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Denaxa, M. et al. Modulation of apoptosis controls inhibitory interneuron number in the cortex. Cell Rep. 22, 1710–1721 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wong, F. K. et al. Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature 557, 668–673 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Sessa, A. et al. Tbr2-positive intermediate (basal) neuronal progenitors safeguard cerebral cortex expansion by controlling amplification of pallial glutamatergic neurons and attraction of subpallial GABAergic interneurons. Genes Dev. 24, 1816–1826 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Voronova, A. et al. Migrating interneurons secrete fractalkine to promote oligodendrocyte formation in the developing mammalian brain. Neuron 94, 500–516 (2017).

    CAS  PubMed  Google Scholar 

  94. Seuntjens, E. et al. Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors. Nat. Neurosci. 12, 1373–1380 (2009). This study unravels a feedback regulatory loop from newborn postmitotic PNs to their progenitors in order to control the sequential generation of PNs dedicated to distinct layers.

    CAS  PubMed  Google Scholar 

  95. Wang, W. et al. Feedback regulation of apical progenitor fate by immature neurons through Wnt7-Celsr3-Fzd3 signalling. Nat. Commun. 7, 10936 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829–840 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Goldmann, T. et al. Origin, fate and dynamics of macrophages at central nervous system interfaces. Nat. Immunol. 17, 797–805 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Rymo, S. F. et al. A two-way communication between microglial cells and angiogenic sprouts regulates angiogenesis in aortic ring cultures. PLOS ONE 6, e15846 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Shigemoto-Mogami, Y., Hoshikawa, K., Goldman, J. E., Sekino, Y. & Sato, K. Microglia enhance neurogenesis and oligodendrogenesis in the early postnatal subventricular zone. J. Neurosci. 34, 2231–2243 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Balia, M., Benamer, N. & Angulo, M. C. A specific GABAergic synapse onto oligodendrocyte precursors does not regulate cortical oligodendrogenesis. Glia 65, 1821–1832 (2017).

    PubMed  Google Scholar 

  101. Orduz, D. et al. Interneurons and oligodendrocyte progenitors form a structured synaptic network in the developing neocortex. eLife 4, e06953 (2015).

    PubMed Central  Google Scholar 

  102. Tielens, S., Godin, J. D. & Nguyen, L. Real-time recordings of migrating cortical neurons from GFP and Cre recombinase expressing mice. Curr. Protoc. Neurosci. 74, 3.29.1–3.29.23 (2016).

    Google Scholar 

  103. Gao, X. et al. Artificial microniche array with spatially structured biochemical cues. Methods Mol. Biol. 1771, 55–66 (2018).

    CAS  PubMed  Google Scholar 

  104. Decock, J., Schlenk, M. & Salmon, J. B. In situ photo-patterning of pressure-resistant hydrogel membranes with controlled permeabilities in PEGDA microfluidic channels. Lab. Chip 18, 1075–1083 (2018).

    CAS  PubMed  Google Scholar 

  105. Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379 (2013).

    CAS  PubMed  Google Scholar 

  106. Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54–59 (2017). This works describes a novel method consisting of fusing human patterned organoids to study the migration of interneurons invading pallial-like structures.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Xiang, Y. et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21, 383–398 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Bagley, J. A., Reumann, D., Bian, S., Levi-Strauss, J. & Knoblich, J. A. Fused cerebral organoids model interactions between brain regions. Nat. Methods 14, 743–751 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Jr. The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J. Neurosci. 16, 6183–6196 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gohlke, J. M., Griffith, W. C. & Faustman, E. M. Computational models of neocortical neuronogenesis and programmed cell death in the developing mouse, monkey, and human. Cereb.Cortex 17, 2433–2442 (2007).

    PubMed  Google Scholar 

  111. Cahalane, D. J., Charvet, C. J. & Finlay, B. L. Modeling local and cross-species neuron number variations in the cerebral cortex as arising from a common mechanism. Proc. Natl Acad. Sci. USA 111, 17642–17647 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hsu, L. C. et al. Lhx2 regulates the timing of beta-catenin-dependent cortical neurogenesis. Proc. Natl Acad. Sci. USA 112, 12199–12204 (2015).

    PubMed  PubMed Central  Google Scholar 

  113. Freret-Hodara, B. et al. Enhanced abventricular proliferation compensates cell death in the embryonic cerebral cortex. Cereb. Cortex 27, 4701–4718 (2017).

    PubMed  Google Scholar 

  114. Setty, Y. et al. How neurons migrate: a dynamic in-silico model of neuronal migration in the developing cortex. BMC Syst. Biol. 5, 154 (2011).

    PubMed  PubMed Central  Google Scholar 

  115. Strauss, K. A. et al. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N. Engl. J. Med. 354, 1370–1377 (2006).

    CAS  PubMed  Google Scholar 

  116. Penagarikano, O. et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147, 235–246 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Selimbeyoglu, A. et al. Modulation of prefrontal cortex excitation/inhibition balance rescues social behavior in CNTNAP2-deficient mice. Sci. Transl Med. 9, eaah6733 (2017).

    Google Scholar 

  118. Vogt, D. et al. Mouse Cntnap2 and human CNTNAP2 ASD alleles cell autonomously regulate PV+cortical interneurons. Cereb. Cortex 28, 3868–3879 (2017).

    PubMed Central  Google Scholar 

  119. Penagarikano, O., Mulle, J. G. & Warren, S. T. The pathophysiology of fragile x syndrome. Annu. Rev. Genomics Hum. Genet. 8, 109–129 (2007).

    CAS  PubMed  Google Scholar 

  120. La Fata, G. et al. FMRP regulates multipolar to bipolar transition affecting neuronal migration and cortical circuitry. Nat. Neurosci. 17, 1693–1700 (2014).

    PubMed  Google Scholar 

  121. Selby, L., Zhang, C. & Sun, Q. Q. Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci. Lett. 412, 227–232 (2007).

    CAS  PubMed  Google Scholar 

  122. Manent, J. B., Wang, Y., Chang, Y., Paramasivam, M. & LoTurco, J. J. Dcx reexpression reduces subcortical band heterotopia and seizure threshold in an animal model of neuronal migration disorder. Nat. Med. 15, 84–90 (2009). This study shows that re-expression of DCX in postnatal rats suffering from its embryonic depletion partially rescues radial migration defects. This work thus highlights a postnatal time window for cerebral cortex repair.

    CAS  PubMed  Google Scholar 

  123. Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35, 659–666 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. McKee, C. & Chaudhry, G. R. Advances and challenges in stem cell culture. Colloids Surf. B Biointerfaces 159, 62–77 (2017).

    CAS  PubMed  Google Scholar 

  125. Markram, H. et al. Reconstruction and simulation of neocortical microcircuitry. Cell 163, 456–492 (2015).

    CAS  PubMed  Google Scholar 

  126. Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Geschwind, D. H. & Rakic, P. Cortical evolution: judge the brain by its cover. Neuron 80, 633–647 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Walsh, C. & Cepko, C. L. Clonal dispersion in proliferative layers of developing cerebral cortex. Nature 362, 632–635 (1993).

    CAS  PubMed  Google Scholar 

  129. Metin, C. et al. Conserved pattern of tangential neuronal migration during forebrain development. Development 134, 2815–2827 (2007).

    CAS  PubMed  Google Scholar 

  130. Tanaka, D. H. & Nakajima, K. GABAergic interneuron migration and the evolution of the neocortex. Dev. Growth Differ. 54, 366–372 (2012).

    CAS  PubMed  Google Scholar 

  131. Ma, T. et al. Subcortical origins of human and monkey neocortical interneurons. Nat. Neurosci. 16, 1588–1597 (2013).

    CAS  PubMed  Google Scholar 

  132. Paredes, M. F. et al. Extensive migration of young neurons into the infant human frontal lobe. Science 354, aaf7073 (2016).

    PubMed  PubMed Central  Google Scholar 

  133. Letinic, K. & Rakic, P. Telencephalic origin of human thalamic GABAergic neurons. Nat. Neurosci. 4, 931–936 (2001).

    CAS  PubMed  Google Scholar 

  134. Rao, Y. & Wu, J. Y. Neuronal migration and the evolution of the human brain. Nat. Neurosci. 4, 860–862 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Bielle, F. et al. Slit2 activity in the migration of guidepost neurons shapes thalamic projections during development and evolution. Neuron 69, 1085–1098 (2011). This study shows that ventral migration of guidepost cells opens the path for TC axons to reach the developing cerebral cortex.

    CAS  PubMed  Google Scholar 

  136. Lopez-Bendito, G. et al. Tangential neuronal migration controls axon guidance: a role for neuregulin-1 in thalamocortical axon navigation. Cell 125, 127–142 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Barros, C. S., Franco, S. J. & Muller, U. Extracellular matrix: functions in the nervous system. Cold Spring Harb. Perspect. Biol. 3, a005108 (2011).

    PubMed  PubMed Central  Google Scholar 

  138. Erickson, A. C. & Couchman, J. R. Still more complexity in mammalian basement membranes. J. Histochem. Cytochem. 48, 1291–1306 (2000).

    CAS  PubMed  Google Scholar 

  139. Timpl, R. & Brown, J. C. Supramolecular assembly of basement membranes. Bioessays 18, 123–132 (1996).

    CAS  PubMed  Google Scholar 

  140. Beltran-Valero de Bernabe, D. et al. Mutations in the O-mannosyltransferase gene POMT1 give rise to the severe neuronal migration disorder Walker-Warburg syndrome. Am. J. Hum. Genet. 71, 1033–1043 (2002).

    PubMed  PubMed Central  Google Scholar 

  141. Chen, Z. L., Haegeli, V., Yu, H. & Strickland, S. Cortical deficiency of laminin gamma1 impairs the AKT/GSK-3beta signaling pathway and leads to defects in neurite outgrowth and neuronal migration. Dev. Biol. 327, 158–168 (2009).

    CAS  PubMed  Google Scholar 

  142. Georges-Labouesse, E., Mark, M., Messaddeq, N. & Gansmuller, A. Essential role of alpha 6 integrins in cortical and retinal lamination. Curr. Biol. 8, 983–986 (1998).

    CAS  PubMed  Google Scholar 

  143. Radakovits, R., Barros, C. S., Belvindrah, R., Patton, B. & Muller, U. Regulation of radial glial survival by signals from the meninges. J. Neurosci. 29, 7694–7705 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Lathia, J. D. et al. Patterns of laminins and integrins in the embryonic ventricular zone of the CNS. J. Comp. Neurol. 505, 630–643 (2007).

    PubMed  Google Scholar 

  145. Loulier, K. et al. beta1 integrin maintains integrity of the embryonic neocortical stem cell niche. PLOS Biol. 7, e1000176 (2009).

    PubMed  PubMed Central  Google Scholar 

  146. Stanco, A. et al. Netrin-1-alpha3beta1 integrin interactions regulate the migration of interneurons through the cortical marginal zone. Proc. Natl Acad. Sci. USA 106, 7595–7600 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Zimmer, G. et al. Chondroitin sulfate acts in concert with semaphorin 3A to guide tangential migration of cortical interneurons in the ventral telencephalon. Cereb. Cortex 20, 2411–2422 (2010).

    PubMed  Google Scholar 

  148. Kornack, D. R. & Rakic, P. Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron 15, 311–321 (1995).

    CAS  PubMed  Google Scholar 

  149. Luskin, M. B., Pearlman, A. L. & Sanes, J. R. Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron 1, 635–647 (1988).

    CAS  PubMed  Google Scholar 

  150. Evrony, G. D. et al. Cell lineage analysis in human brain using endogenous retroelements. Neuron 85, 49–59 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Garcia-Moreno, F., Vasistha, N. A., Begbie, J. & Molnar, Z. CLoNe is a new method to target single progenitors and study their progeny in mouse and chick. Development 141, 1589–1598 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007).

    CAS  PubMed  Google Scholar 

  153. Loulier, K. et al. Multiplex cell and lineage tracking with combinatorial labels. Neuron 81, 505–520 (2014).

    CAS  PubMed  Google Scholar 

  154. Hippenmeyer, S. et al. Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron 68, 695–709 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Beattie, R. et al. Mosaic analysis with double markers reveals distinct sequential functions of Lgl1 in neural stem cells. Neuron 94, 517–533 (2017).

    CAS  PubMed  Google Scholar 

  156. Brown, K. N. et al. Clonal production and organization of inhibitory interneurons in the neocortex. Science 334, 480–486 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ciceri, G. et al. Lineage-specific laminar organization of cortical GABAergic interneurons. Nat. Neurosci. 16, 1199–1210 (2013).

    CAS  PubMed  Google Scholar 

  158. Mayer, C. et al. Clonally related forebrain interneurons disperse broadly across both functional areas and structural boundaries. Neuron 87, 989–998 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank M. H. Adhikari for critical reading. C.G.S. is paid by F.R.S.-FNRS (EOS 0019118F-RG36). E.P. is paid by the IAP-VII network P7/20 and a Federation of European Biochemical Societies (FEBS) short-term fellowship. L.N. is a senior research associate of the F.R.S-FNRS at the University of Liège. His research is funded by F.R.S.-FNRS (EOS 0019118F-RG36, CDR J.0028.18 and PDR T.0073.15), the Fonds Léon Fredericq, the Fondation Médicale Reine Elisabeth, the Fondation Simone et Pierre Clerdent, the Belgian Science Policy (IAP-VII network P7/20), the ARC (ARC11/16-01), the ERANET Neuron STEM-MCD and the ERANET Neuron NEUROTALK.

Reviewer information

Nature Reviews Neuroscience thanks S. Pleasure and K. Nagata for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to all aspects of the manuscript.

Corresponding author

Correspondence to Laurent Nguyen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Cytoarchitectonics

The cellular composition of a biological tissue.

Cortical wall

Part of the dorsal forebrain that corresponds to the presumptive cerebral cortex.

Interneuron specification

Cellular process engaging a precursor to self-autonomously acquire functional and morphological features of interneurons when placed in a neutral environment.

Leading process

Principal neurite of a migrating cell located ahead of the soma that contributes to its navigation along a migration path.

Polarity reversal

Inversion of the polarity of a migrating cell along its moving axis.

Nucleokinesis

Forward displacement of the nucleus in the leading process of a migrating neuron driven by dynamic changes of the cytoskeleton and in particular actomyosin contraction taking place around the nucleus. In moving neurons, the nucleokinesis is cyclic and paces their migration.

Subpallial sorting

Biological process contributing to the sorting of cells born in the ventral forebrain (the subpallium) into the dorsal forebrain (the pallium).

Anterior entopeduncular area

Region of the ventral forebrain that hosts progenitors of GABAergic and cholinergic interneurons as well as oligodendrocyte progenitor cells.

Neocortical arealization

Biological process that organizes the tangential subdivision of distinct neocortical fields responsible for computing higher cerebral functions.

Morphogens

Non-uniformly distributed molecules that govern biological processes contributing to morphogenesis in a developing organism.

Multipolar migration

Cell migration mode characterized by the continuous extension and retraction of new neurites from the soma.

Boyden chamber assay

Cell chemotaxis assay based on a chamber of two medium-filled compartments separated by a microporous membrane.

Nanotopography

Specific surface features of biomaterials generated at the nanoscopic scale.

Random walk

Cell migration mode characterized by constant changes of movement angle.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, C.G., Peyre, E. & Nguyen, L. Cell migration promotes dynamic cellular interactions to control cerebral cortex morphogenesis. Nat Rev Neurosci 20, 318–329 (2019). https://doi.org/10.1038/s41583-019-0148-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-019-0148-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing