Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Changing concepts in presurgical assessment for epilepsy surgery

Abstract

Candidates for epilepsy surgery must undergo presurgical evaluation to establish whether and how surgical treatment can stop seizures without causing neurological deficits. Various techniques, including MRI, PET, single-photon emission CT, video-EEG, magnetoencephalography and invasive EEG, aim to identify the diseased brain tissue and the involved network. Recent technical and methodological developments, encompassing both advances in existing techniques and new combinations of technologies, are enhancing the ability to define the optimal resection strategy. Multimodal interpretation and predictive computer models are expected to aid surgical planning and patient counselling, and multimodal intraoperative guidance is likely to increase surgical precision. In this Review, we discuss how the knowledge derived from these new approaches is challenging our way of thinking about surgery to stop focal seizures. In particular, we highlight the importance of looking beyond the EEG seizure onset zone and considering focal epilepsy as a brain network disease in which long-range connections need to be taken into account. We also explore how new diagnostic techniques are revealing essential information in the brain that was previously hidden from view.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concepts of the epileptogenic brain.
Fig. 2: Presurgical methods to locate the epileptogenic area.
Fig. 3: Multimodal imaging.

Similar content being viewed by others

References

  1. Talairach, J. & Bancaud, J. Lesion, ‘irritative’ zone and epileptogenic focus. Confin. Neurol. 27, 91–94 (1966).

    CAS  PubMed  Google Scholar 

  2. Lüders, H. O., Najm, I., Nair, D., Widdess-Walsh, P. & Bingman, W. The epileptogenic zone: general principles. Epileptic Disord. 8 (Suppl. 2), S1–S9 (2006).

    PubMed  Google Scholar 

  3. Spencer, S. S. Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43, 219–227 (2002).

    PubMed  Google Scholar 

  4. Stefan, H. & da Silva, F. H. L. Epileptic neuronal networks: methods of identification and clinical relevance. Front. Neurol. 4, 8 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. Bartolomei, F. et al. Defining epileptogenic networks: contribution of SEEG and signal analysis. Epilepsia 58, 1131–1147 (2017).

    PubMed  Google Scholar 

  6. Vakharia, V. N. et al. Getting the best outcomes from epilepsy surgery. Ann. Neurol. 83, 676–690 (2018).

    PubMed  PubMed Central  Google Scholar 

  7. Mouthaan, B. E. et al. Current use of imaging and electromagnetic source localization procedures in epilepsy surgery centers across Europe. Epilepsia 57, 770–776 (2016).

    PubMed  Google Scholar 

  8. Bonini, F. et al. Frontal lobe seizures: from clinical semiology to localization. Epilepsia 55, 264–277 (2014).

    PubMed  Google Scholar 

  9. Boesebeck, F., Schulz, R., May, T. & Ebner, A. Lateralizing semiology predicts the seizure outcome after epilepsy surgery in the posterior cortex. Brain 125, 2320–2331 (2002).

    CAS  PubMed  Google Scholar 

  10. Dupont, S. et al. Lateralizing value of semiology in medial temporal lobe epilepsy. Acta Neurol. Scand. 132, 401–409 (2015).

    CAS  PubMed  Google Scholar 

  11. Hermann, B. P., Wyler, A. R., Richey, E. T. & Rea, J. M. Memory function and verbal learning ability in patients with complex partial seizures of temporal lobe origin. Epilepsia 28, 547–554 (1987).

    CAS  PubMed  Google Scholar 

  12. Baud, M. O., Vulliemoz, S. & Seeck, M. Recurrent secondary generalization in frontal lobe epilepsy: predictors and a potential link to surgical outcome? Epilepsia 56, 1454–1462 (2015).

    PubMed  Google Scholar 

  13. Miserocchi, A. et al. Surgery for temporal lobe epilepsy in children: relevance of presurgical evaluation and analysis of outcome. J. Neurosurg. Pediatr. 11, 256–267 (2013).

    PubMed  Google Scholar 

  14. Barba, C. et al. Temporal plus epilepsy is a major determinant of temporal lobe surgery failures. Brain 139, 444–451 (2016).

    PubMed  Google Scholar 

  15. Okanari, K. et al. Rapid eye movement sleep reveals epileptogenic spikes for resective surgery in children with generalized interictal discharges. Epilepsia 56, 1445–1453 (2015).

    PubMed  Google Scholar 

  16. Sammaritano, M., Gigli, G. L. & Gotman, J. Interictal spiking during wakefulness and sleep and the localization of foci in temporal lobe epilepsy. Neurology 41, 290–290 (1991).

    CAS  PubMed  Google Scholar 

  17. Cherian, A., Radhakrishnan, A., Parameswaran, S., Varma, R. & Radhakrishnan, K. Do sphenoidal electrodes aid in surgical decision making in drug resistant temporal lobe epilepsy? Clin. Neurophysiol. 123, 463–470 (2012).

    PubMed  Google Scholar 

  18. Velasco, T. R. et al. Foramen ovale electrodes can identify a focal seizure onset when surface EEG fails in mesial temporal lobe epilepsy. Epilepsia 47, 1300–1307 (2006).

    PubMed  Google Scholar 

  19. Bach Justesen, A. et al. Added clinical value of the inferior temporal EEG electrode chain. Clin. Neurophysiol. 129, 291–295 (2018).

    PubMed  Google Scholar 

  20. Alvim, M. K. M. et al. Is inpatient ictal video-electroencephalographic monitoring mandatory in mesial temporal lobe epilepsy with unilateral hippocampal sclerosis? A prospective study. Epilepsia 59, 410–419 (2018).

    PubMed  Google Scholar 

  21. Jiménez-Jiménez, D. et al. Prognostic value of intracranial seizure onset patterns for surgical outcome of the treatment of epilepsy. Clin. Neurophysiol. 126, 257–267 (2015).

    PubMed  Google Scholar 

  22. Eisenschenk, S., Gilmore, R. L., Cibula, J. E. & Roper, S. N. Lateralization of temporal lobe foci: depth versus subdural electrodes. Clin. Neurophysiol. 112, 836–844 (2001).

    CAS  PubMed  Google Scholar 

  23. Greiner, H. M. et al. Preresection intraoperative electrocorticography (ECoG) abnormalities predict seizure-onset zone and outcome in pediatric epilepsy surgery. Epilepsia 57, 582–589 (2016).

    PubMed  Google Scholar 

  24. Ferrier, C. H. et al. Electrocorticographic discharge patterns in glioneuronal tumors and focal cortical dysplasia. Epilepsia 47, 1477–1486 (2006).

    PubMed  Google Scholar 

  25. Schwartz, T. H., Bazil, C. W., Forgione, M., Bruce, J. N. & Goodman, R. R. Do reactive post-resection ‘injury’ spikes exist? Epilepsia 41, 1463–1468 (2000).

    CAS  PubMed  Google Scholar 

  26. Kuzniecky, R. et al. Magnetic resonance imaging in temporal lobe epilepsy: pathological correlations. Ann. Neurol. 22, 341–347 (1987).

    CAS  PubMed  Google Scholar 

  27. Mosewich, R. K. et al. Factors predictive of the outcome of frontal lobe epilepsy surgery. Epilepsia 41, 843–849 (2000).

    CAS  PubMed  Google Scholar 

  28. Jeha, L. E. et al. Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain 130, 574–584 (2007).

    PubMed  Google Scholar 

  29. Wellmer, J. et al. Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia 54, 1977–1987 (2013).

    PubMed  Google Scholar 

  30. Von Oertzen, J. et al. Standard magnetic resonance imaging is inadequate for patients with refractory focal epilepsy. J. Neurol. Neurosurg. Psychiatry 73, 643–647 (2002).

    Google Scholar 

  31. Knake, S. et al. 3T phased array MRI improves the presurgical evaluation in focal epilepsies: a prospective study. Neurology 65, 1026–1031 (2005).

    CAS  PubMed  Google Scholar 

  32. Goyal, M., Bangert, B. A., Lewin, J. S., Cohen, M. L., & Robinson, S. High-resolution, M. R. I. enhances identification of lesions amenable to surgical therapy in children with intractable epilepsy. Epilepsia 45, 954–959 (2004).

    PubMed  Google Scholar 

  33. Zijlmans, M. et al. 3T versus 1.5T phased-array MRI in the presurgical work-up of patients with partial epilepsy of uncertain focus. J. Magn. Reson. Imaging 30, 256–262 (2009).

    PubMed  Google Scholar 

  34. Bansal, L. et al. PET hypermetabolism in medically resistant childhood epilepsy: incidence, associations, and surgical outcome. Epilepsia 57, 436–444 (2016).

    PubMed  Google Scholar 

  35. Lopinto-Khoury, C. et al. Surgical outcome in PET-positive, MRI-negative patients with temporal lobe epilepsy. Epilepsia 53, 342–348 (2012).

    PubMed  Google Scholar 

  36. Chassoux, F. et al. 18F-FDG–PET patterns of surgical success and failure in mesial temporal lobe epilepsy. Neurology 88, 1045–1053 (2017).

    CAS  PubMed  Google Scholar 

  37. Wong, C. H. et al. Relationship between preoperative hypometabolism and surgical outcome in neocortical epilepsy surgery. Epilepsia 53, 1333–1340 (2012).

    PubMed  Google Scholar 

  38. Juhász, C. et al. Relationship of flumazenil and glucose PET abnormalities to neocortical epilepsy surgery outcome. Neurology 56, 1650–1658 (2001).

    PubMed  Google Scholar 

  39. O’Brien, T. J. et al. Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology 50, 445–454 (1998).

    PubMed  Google Scholar 

  40. Von Oertzen, T. J. et al. Prospective use of subtraction ictal SPECT coregistered to MRI (SISCOM) in presurgical evaluation of epilepsy. Epilepsia 52, 2239–2248 (2011).

    Google Scholar 

  41. Matsuda, H. et al. Contribution of subtraction ictal SPECT coregistered to MRI to epilepsy surgery: a multicenter study. Ann. Nucl. Med. 23, 283–291 (2009).

    PubMed  Google Scholar 

  42. Tousseyn, S. et al. Connectivity in ictal single photon emission computed tomography perfusion: a cortico-cortical evoked potential study. Brain 140, 1872–1884 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Vakharia, V. N. et al. Accuracy of intracranial electrode placement for stereoencephalography: a systematic review and meta-analysis. Epilepsia 58, 921–932 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Kannan, L., Vogrin, S., Bailey, C., Maixner, W. & Harvey, A. S. Centre of epileptogenic tubers generate and propagate seizures in tuberous sclerosis. Brain 139, 2653–2667 (2016).

    PubMed  Google Scholar 

  45. Birot, G. et al. Head model and electrical source imaging: a study of 38 epileptic patients. Neuroimage Clin. 5, 77–83 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Brodbeck, V. et al. Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain 134, 2887–2897 (2011).

    PubMed  PubMed Central  Google Scholar 

  47. Lascano, A. M. et al. Yield of MRI, high-density electric source imaging (HD-ESI), SPECT and PET in epilepsy surgery candidates. Clin. Neurophysiol. 127, 150–155 (2016).

    PubMed  Google Scholar 

  48. Boto, E. et al. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 555, 657–661 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wheless, J. W. et al. A comparison of magnetoencephalography, MRI, and V-EEG in patients evaluated for epilepsy surgery. Epilepsia 40, 931–941 (1999).

    CAS  PubMed  Google Scholar 

  50. Jung, J. et al. The value of magnetoencephalography for seizure-onset zone localization in magnetic resonance imaging-negative partial epilepsy. Brain 136, 3176–3186 (2013).

    PubMed  PubMed Central  Google Scholar 

  51. Englot, D. J. et al. Epileptogenic zone localization using magnetoencephalography predicts seizure freedom in epilepsy surgery. Epilepsia 56, 949–958 (2015).

    PubMed  PubMed Central  Google Scholar 

  52. Murakami, H. et al. Correlating magnetoencephalography to stereo-electroencephalography in patients undergoing epilepsy surgery. Brain 139, 2935–2947 (2016).

    PubMed  PubMed Central  Google Scholar 

  53. Fischer, M. J. M., Scheler, G. & Stefan, H. Utilization of magnetoencephalography results to obtain favourable outcomes in epilepsy surgery. Brain 128, 153–157 (2005).

    PubMed  Google Scholar 

  54. Tenney, J. R., Fujiwara, H., Horn, P. S. & Rose, D. F. Comparison of magnetic source estimation to intracranial EEG, resection area, and seizure outcome. Epilepsia 55, 1854–1863 (2014).

    PubMed  Google Scholar 

  55. Knake, S. et al. The value of multichannel MEG and EEG in the presurgical evaluation of 70 epilepsy patients. Epilepsy Res. 69, 80–86 (2006).

    CAS  PubMed  Google Scholar 

  56. Chowdhury, R. A. et al. MEG–EEG information fusion and electromagnetic source imaging: from theory to clinical application in epilepsy. Brain Topogr. 28, 785–812 (2015).

    PubMed  PubMed Central  Google Scholar 

  57. Gavaret, M. et al. Simultaneous SEEG-MEG-EEG recordings overcome the SEEG limited spatial sampling. Epilepsy Res. 128, 68–72 (2016).

    PubMed  Google Scholar 

  58. Badier, J. M., Bartolomei, F., Chauvel, P., Bénar, C. G. & Gavaret, M. Magnetic source imaging in posterior cortex epilepsies. Brain Topogr. 28, 162–171 (2015).

    PubMed  Google Scholar 

  59. Nemtsas, P. et al. Source localization of ictal epileptic activity based on high-density scalp EEG data. Epilepsia 58, 1027–1036 (2017).

    PubMed  Google Scholar 

  60. Pellegrino, G. et al. Source localization of the seizure onset zone from ictal EEG/MEG data. Hum. Brain Mapp. 37, 2528–2546 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. Ramanujam, B. et al. Can ictal-MEG obviate the need for phase II monitoring in people with drug-refractory epilepsy? A prospective observational study. Seizure 45, 17–23 (2017).

    PubMed  Google Scholar 

  62. Koessler, L. et al. Source localization of ictal epileptic activity investigated by high resolution EEG and validated by SEEG. Neuroimage 51, 642–653 (2010).

    PubMed  Google Scholar 

  63. Korzeniewska, A. et al. Ictal propagation of high frequency activity is recapitulated in interictal recordings: effective connectivity of epileptogenic networks recorded with intracranial EEG. Neuroimage 101, 96–113 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wilke, C., Worrell, G. & He, B. Graph analysis of epileptogenic networks in human partial epilepsy. Epilepsia 52, 84–93 (2011).

    PubMed  Google Scholar 

  65. Park, E.-H. & Madsen, J. R. Granger causality analysis of interictal iEEG predicts seizure focus and ultimate resection. Neurosurgery 82, 99–109 (2018).

    PubMed  Google Scholar 

  66. Tomlinson, S. B., Porter, B. E. & Marsh, E. D. Interictal network synchrony and local heterogeneity predict epilepsy surgery outcome among pediatric patients. Epilepsia 58, 402–411 (2017).

    PubMed  Google Scholar 

  67. Van Diessen, E. et al. Are high frequency oscillations associated with altered network topology in partial epilepsy? Neuroimage 82, 564–573 (2013).

    PubMed  Google Scholar 

  68. Ibrahim, G. M. et al. Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms. Exp. Neurol. 251, 30–38 (2014).

    PubMed  Google Scholar 

  69. Zweiphenning, W. J. E. M. et al. High frequency oscillations and high frequency functional network characteristics in the intraoperative electrocorticogram in epilepsy. Neuroimage Clin. 12, 928–939 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Burns, S. P., Santaniello, S., Yaffe, R. B., Jouny, C. C. & Crone, N. E. Network dynamics of the brain and influence of the epileptic seizure onset zone. Proc. Natl Acad. Sci. USA 111, E5321–E5330 (2014).

    CAS  PubMed  Google Scholar 

  71. Staljanssens, W. et al. EEG source connectivity to localize the seizure onset zone in patients with drug resistant epilepsy. Neuroimage Clin. 16, 689–698 (2017).

    PubMed  PubMed Central  Google Scholar 

  72. Sinha, N. et al. Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain 140, 319–332 (2017).

    PubMed  Google Scholar 

  73. Goodfellow, M. et al. Estimation of brain network ictogenicity predicts outcome from epilepsy surgery. Sci. Rep. 6, 29215 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Hebbink, J., Meijer, H., Huiskamp, G., van Gils, S. & Leijten, F. Phenomenological network models: lessons for epilepsy surgery. Epilepsia 58, e147–e151 (2017).

    PubMed  Google Scholar 

  75. Valentín, A. et al. Single pulse electrical stimulation for identification of structural abnormalities and prediction of seizure outcome after epilepsy surgery: a prospective study. Lancet Neurol. 4, 718–726 (2005).

    PubMed  Google Scholar 

  76. Van’ t Klooster, M. A. et al. Time-frequency analysis of single pulse electrical stimulation to assist delineation of epileptogenic cortex. Brain 134, 2855–2866 (2011).

    Google Scholar 

  77. Enatsu, R. et al. Correlations between ictal propagation and response to electrical cortical stimulation: a cortico-cortical evoked potential study. Epilepsy Res. 101, 76–87 (2012).

    PubMed  Google Scholar 

  78. Valentin, A. et al. Late EEG responses triggered by transcranial magnetic stimulation (TMS) in the evaluation of focal epilepsy. Epilepsia 49, 470–480 (2008).

    Google Scholar 

  79. Shafi, M. M. et al. Physiological consequences of abnormal connectivity in a developmental epilepsy. Ann. Neurol. 77, 487–503 (2015).

    PubMed  PubMed Central  Google Scholar 

  80. Witkowska-Wrobel, A., Aristovich, K., Faulkner, M., Avery, J. & Holder, D. Feasibility of imaging epileptic seizure onset with EIT and depth electrodes. Neuroimage 173, 311–321 (2018).

    PubMed  Google Scholar 

  81. Bartolomei, F., Chauvel, P. & Wendling, F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain 131, 1818–1830 (2008).

    PubMed  Google Scholar 

  82. David, O. et al. Imaging the seizure onset zone with stereo-electroencephalography. Brain 134, 2898–2911 (2011).

    PubMed  Google Scholar 

  83. Aubert, S. et al. Local and remote epileptogenicity in focal cortical dysplasias and neurodevelopmental tumours. Brain 132, 3072–3086 (2009).

    PubMed  Google Scholar 

  84. Van Mierlo, P. et al. Ictal-onset localization through connectivity analysis of intracranial EEG signals in patients with refractory epilepsy. Epilepsia 54, 1409–1418 (2013).

    PubMed  Google Scholar 

  85. Grinenko, O. et al. A fingerprint of the epileptogenic zone in human epilepsies. Brain 141, 117–131 (2018).

    PubMed  Google Scholar 

  86. Jacobs, J. et al. Value of electrical stimulation and high frequency oscillations (80–500 Hz) in identifying epileptogenic areas during intracranial EEG recordings. Epilepsia 51, 573–582 (2010).

    PubMed  Google Scholar 

  87. Leung, H. et al. Ictal high-frequency oscillations and hyperexcitability in refractory epilepsy. Clin. Neurophysiol. 126, 2049–2057 (2015).

    PubMed  Google Scholar 

  88. Zijlmans, M. et al. EEG–fMRI in the preoperative work-up for epilepsy surgery. Brain 130, 2343–2353 (2007).

    PubMed  Google Scholar 

  89. Khoo, H. M. et al. The hemodynamic response to interictal epileptic discharges localizes the seizure-onset zone. Epilepsia 58, 811–823 (2017).

    CAS  PubMed  Google Scholar 

  90. Coan, A. C. et al. EEG–fMRI in the presurgical evaluation of temporal lobe epilepsy. J. Neurol. Neurosurg. Psychiatry 87, 642–649 (2016).

    PubMed  Google Scholar 

  91. An, D. et al. Electroencephalography/functional magnetic resonance imaging responses help predict surgical outcome in focal epilepsy. Epilepsia 54, 2184–2194 (2013).

    PubMed  PubMed Central  Google Scholar 

  92. van Houdt, P. J. et al. EEG–fMRI correlation patterns in the presurgical evaluation of focal epilepsy: a comparison with electrocorticographic data and surgical outcome measures. Neuroimage 75, 246–256 (2013).

    Google Scholar 

  93. Donaire, A. et al. Identifying the cortical substrates of interictal epileptiform activity in patients with extratemporal epilepsy: an EEG–fMRI sequential analysis and FDG–PET study. Epilepsia 54, 678–690 (2013).

    PubMed  Google Scholar 

  94. Thornton, R. et al. Epileptic networks in focal cortical dysplasia revealed using electroencephalography-functional magnetic resonance imaging. Ann. Neurol. 70, 822–837 (2011).

    PubMed  PubMed Central  Google Scholar 

  95. Centeno, M. et al. Combined electroencephalography–functional magnetic resonance imaging and electrical source imaging improves localization of pediatric focal epilepsy. Ann. Neurol. 82, 278–287 (2017).

    CAS  PubMed  Google Scholar 

  96. Tyvaert, L., LeVan, P., Dubeau, F. & Gotman, J. Noninvasive dynamic imaging of seizures in epileptic patients. Hum. Brain Mapp. 30, 3993–4011 (2009).

    PubMed  PubMed Central  Google Scholar 

  97. Chaudhary, U. J. et al. Mapping preictal and ictal haemodynamic networks using video-electroencephalography and functional imaging. Brain 135, 3645–3663 (2012).

    PubMed  Google Scholar 

  98. Maziero, D. et al. Towards motion insensitive EEG-fMRI: correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system. Neuroimage 138, 13–27 (2016).

    PubMed  Google Scholar 

  99. Jacobs, J. et al. Fast fMRI provides high statistical power in the analysis of epileptic networks. Neuroimage 88, 282–294 (2014).

    PubMed  Google Scholar 

  100. Grouiller, F. et al. Presurgical brain mapping in epilepsy using simultaneous EEG and functional MRI at ultra-high field: feasibility and first results. MAGMA 29, 605–616 (2016).

    CAS  PubMed  Google Scholar 

  101. Murta, T. et al. A study of the electro-haemodynamic coupling using simultaneously acquired intracranial EEG and fMRI data in humans. Neuroimage 142, 371–380 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Machado, A. et al. Detection of hemodynamic responses to epileptic activity using simultaneous electro-encephalography (EEG)/near infra red spectroscopy (NIRS) acquisitions. Neuroimage 56, 114–125 (2011).

    CAS  PubMed  Google Scholar 

  103. Manoochehri, M., Mahmoudzadeh, M., Bourel-Ponchel, E. & Wallois, F. Cortical light scattering during interictal epileptic spikes in frontal lobe epilepsy in children: a fast optical signal and electroencephalographic study. Epilepsia 58, 2064–2072 (2017).

    PubMed  Google Scholar 

  104. Staba, R. et al. High-frequency oscillations recorded in human medial temporal lobe during sleep. Ann. Neurol. 56, 108–115 (2004).

    PubMed  Google Scholar 

  105. Jirsch, J. D. et al. High-frequency oscillations during human focal seizures. Brain 129, 1593–1608 (2006).

    CAS  PubMed  Google Scholar 

  106. Andrade-Valenca, L. P., Dubeau, F., Mari, F., Zelmann, R. & Gotman, J. Interictal scalp fast oscillations as a marker of the seizure onset zone. Neurology 77, 524–531 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. van Klink, N., Hillebrand, A. & Zijlmans, M. Identification of epileptic high frequency oscillations in the time domain by using MEG beamformer-based virtual sensors. Clin. Neurophysiol. 127, 197–208 (2016).

    PubMed  Google Scholar 

  108. Brázdil, M. et al. Very high-frequency oscillations: novel biomarkers of the epileptogenic zone. Ann. Neurol. 82, 299–310 (2017).

    PubMed  Google Scholar 

  109. Usui, N. et al. Significance of very-high-frequency oscillations (over 1,000Hz) in epilepsy. Ann. Neurol. 78, 295–302 (2015).

    PubMed  Google Scholar 

  110. Hussain, S. A. et al. Intraoperative fast ripples independently predict postsurgical epilepsy outcome: comparison with other electrocorticographic phenomena. Epilepsy Res. 135, 79–86 (2017).

    PubMed  PubMed Central  Google Scholar 

  111. Wu, J. Y. et al. Removing interictal fast ripples on electrocorticography linked with seizure freedom in children. Neurology 75, 1686–1694 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. van ’t Klooster, M. A. et al. Residual fast ripples in the intraoperative corticogram predict epilepsy surgery outcome. Neurology 85, 120–128 (2015).

    PubMed  Google Scholar 

  113. van ’t Klooster, M. A. et al. Tailoring epilepsy surgery with fast ripples in the intraoperative electrocorticogram. Ann. Neurol. 81, 664–676 (2017).

    PubMed  Google Scholar 

  114. Roehri, N. et al. High-frequency oscillations are not better biomarkers of epileptogenic tissues than spikes. Ann. Neurol. 83, 84–97 (2018).

    CAS  PubMed  Google Scholar 

  115. Jacobs, J. et al. High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann. Neurol. 67, 209–220 (2010).

    PubMed  PubMed Central  Google Scholar 

  116. Cho, J. R. et al. Resection of individually identified high-rate high-frequency oscillations region is associated with favorable outcome in neocortical epilepsy. Epilepsia 55, 1872–1883 (2014).

    PubMed  Google Scholar 

  117. Okanishi, T. et al. Interictal high frequency oscillations correlating with seizure outcome in patients with widespread epileptic networks in tuberous sclerosis complex. Epilepsia 55, 1602–1610 (2014).

    PubMed  Google Scholar 

  118. Akiyama, T. et al. Focal resection of fast ripples on extraoperative intracranial EEG improves seizure outcome in pediatric epilepsy. Epilepsia 52, 1802–1811 (2011).

    PubMed  Google Scholar 

  119. Jacobs, J. et al. Removing high-frequency oscillations: a prospective multicenter study on seizure outcome. Neurology 91, e1040–e1053 (2018).

    PubMed  PubMed Central  Google Scholar 

  120. van ’t Klooster, M. A. et al. High frequency oscillations in the intra-operative ECoG to guide epilepsy surgery (‘The HFO Trial’): study protocol for a randomized controlled trial. Trials 16, 422 (2015).

    PubMed  PubMed Central  Google Scholar 

  121. Liu, S. et al. Stereotyped high-frequency oscillations discriminate seizure onset zones and critical functional cortex in focal epilepsy. Brain 141, 713–730 (2018).

    PubMed  PubMed Central  Google Scholar 

  122. Wang, S. et al. Interictal ripples nested in epileptiform discharge help to identify the epileptogenic zone in neocortical epilepsy. Clin. Neurophysiol. 128, 945–951 (2017).

    PubMed  Google Scholar 

  123. Fedele, T. et al. Automatic detection of high frequency oscillations during epilepsy surgery predicts seizure outcome. Clin. Neurophysiol. 127, 3066–3074 (2016).

    PubMed  Google Scholar 

  124. Bénar, C. G., Chauvière, L., Bartolomei, F. & Wendling, F. Pitfalls of high-pass filtering for detecting epileptic oscillations: a technical note on ‘false’ ripples. Clin. Neurophysiol. 121, 301–310 (2010).

    PubMed  Google Scholar 

  125. Worrell, G. A. et al. High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings. Brain 131, 928–937 (2008).

    PubMed  PubMed Central  Google Scholar 

  126. Modur, P. N., Zhang, S. & Vitaz, T. W. Ictal high-frequency oscillations in neocortical epilepsy: implications for seizure localization and surgical resection. Epilepsia 52, 1792–1801 (2011).

    PubMed  PubMed Central  Google Scholar 

  127. Weiss, S. A. et al. Ictal high frequency oscillations distinguish two types of seizure territories in humans. Brain 136, 3796–3808 (2013).

    PubMed  PubMed Central  Google Scholar 

  128. Zijlmans, M. et al. Ictal and interictal high frequency oscillations in patients with focal epilepsy. Clin. Neurophysiol. 122, 664–671 (2011).

    PubMed  Google Scholar 

  129. Blumcke, I. et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N. Engl. J. Med. 377, 1648–1656 (2017).

    PubMed  Google Scholar 

  130. Veersema, T. J. et al. 7 Tesla T2*-weighted MRI as a tool to improve detection of focal cortical dysplasia. Epileptic Disord. 18, 315–323 (2016).

    PubMed  Google Scholar 

  131. De Ciantis, A. et al. 7T MRI in focal epilepsy with unrevealing conventional field strength imaging. Epilepsia 57, 445–454 (2016).

    PubMed  Google Scholar 

  132. Kwan, B. Y. M. et al. Usage of SWI (susceptibility weighted imaging) acquired at 7 T for qualitative evaluation of temporal lobe epilepsy patients with histopathological and clinical correlation: an initial pilot study. J. Neurol. Sci. 369, 82–87 (2016).

    PubMed  Google Scholar 

  133. Saini, J. et al. Susceptibility weighted imaging in the diagnostic evaluation of patients with intractable epilepsy. Epilepsia 50, 1462–1473 (2009).

    PubMed  Google Scholar 

  134. Jack, C. R. et al. Magnetic resonance image-based hippocampal volumentry: correlation with outcome after temporal lobectomy. Ann. Neurol. 31, 138–146 (1992).

    PubMed  Google Scholar 

  135. Martin, P. et al. Voxel-based magnetic resonance image postprocessing in epilepsy. Epilepsia 58, 1653–1664 (2017).

    PubMed  PubMed Central  Google Scholar 

  136. Hong, S. J., Bernhardt, B. C., Schrader, D. S., Bernasconi, N. & Bernasconi, A. Whole-brain MRI phenotyping in dysplasia-related frontal lobe epilepsy. Neurology 86, 643–650 (2016).

    PubMed  PubMed Central  Google Scholar 

  137. Wang, Z. I. et al. Voxel-based morphometric magnetic resonance imaging (MRI) postprocessing in MRI-negative epilepsies. Ann. Neurol. 77, 1060–1075 (2015).

    PubMed  PubMed Central  Google Scholar 

  138. Delev, D. et al. A multimodal concept for invasive diagnostics and surgery based on neuronavigated voxel-based morphometric MRI postprocessing data in previously nonlesional epilepsy. J. Neurosurg. 128, 1178–1186 (2018).

    PubMed  Google Scholar 

  139. Keller, S. S. et al. Preoperative automated fibre quantification predicts postoperative seizure outcome in temporal lobe epilepsy. Brain 140, 68–82 (2017).

    PubMed  Google Scholar 

  140. Bonilha, L. et al. Presurgical connectome and postsurgical seizure control in temporal lobe epilepsy. Neurology 81, 1704–1710 (2013).

    PubMed  PubMed Central  Google Scholar 

  141. Proix, T., Bartolomei, F., Guye, M. & Jirsa, V. K. Individual brain structure and modelling predict seizure propagation. Brain 140, 641–654 (2017).

    PubMed  PubMed Central  Google Scholar 

  142. Hunyadi, B. et al. ICA extracts epileptic sources from fMRI in EEG-negative patients: a retrospective validation study. PLOS ONE 8, e78796 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Englot, D. J. et al. Global and regional functional connectivity maps of neural oscillations in focal epilepsy. Brain 138, 2249–2262 (2015).

    PubMed  PubMed Central  Google Scholar 

  144. Negishi, M., Martuzzi, R., Novotny, E. J., Spencer, D. D. & Constable, R. T. Functional MRI connectivity as a predictor of the surgical outcome of epilepsy. Epilepsia 52, 1733–1740 (2011).

    PubMed  PubMed Central  Google Scholar 

  145. He, X. et al. Presurgical thalamic ‘hubness’ predicts surgical outcome in temporal lobe epilepsy. Neurology 88, 2285–2293 (2017).

    PubMed  Google Scholar 

  146. Morgan, V. L. et al. Magnetic resonance imaging connectivity for the prediction of seizure outcome in temporal lobe epilepsy. Epilepsia 58, 1251–1260 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Gaxiola-Valdez, I. et al. Seizure onset zone localization using postictal hypoperfusion detected by arterial spin labelling MRI. Brain 140, 2895–2911 (2017).

    PubMed  PubMed Central  Google Scholar 

  148. Eryurt, B. et al. Presurgical evaluation of mesial temporal lobe epilepsy with multiple advanced MR techniques at 3T. J. Neuroradiol. 42, 283–290 (2015).

    PubMed  Google Scholar 

  149. Kurwale, N. S. et al. Impact of intraoperative MRI on outcomes in epilepsy surgery: preliminary experience of two years. Br. J. Neurosurg. 29, 380–385 (2015).

    PubMed  Google Scholar 

  150. Roessler, K. et al. Resective surgery for medically refractory epilepsy using intraoperative MRI and functional neuronavigation: the Erlangen experience of 415 patients. Neurosurg. Focus 40, E15 (2016).

    PubMed  Google Scholar 

  151. Warsi, N. M. et al. 3-T intraoperative MRI (iMRI) for pediatric epilepsy surgery. Childs Nerv. Syst. 32, 2415–2422 (2016).

    PubMed  Google Scholar 

  152. Beare, R. et al. Automated alignment of perioperative MRI scans: a technical note and application in pediatric epilepsy surgery. Hum. Brain Mapp. 37, 3530–3543 (2016).

    PubMed  PubMed Central  Google Scholar 

  153. Chan, H. W. et al. A novel technique of detecting MRI-negative lesion in focal symptomatic epilepsy: intraoperative ShearWave elastography. Epilepsia 55, e30–e33 (2014).

    PubMed  Google Scholar 

  154. Ryvlin, P. et al. Clinical utility of flumazenil-PET versus [18F]fluorodeoxyglucose-PET and MRI in refractory partial epilepsy. A prospective study in 100 patients. Brain 121, 2067–2081 (1998).

    PubMed  Google Scholar 

  155. Hammers, A., Koepp, M. J., Brooks, D. J. & Duncan, J. S. Periventricular white matter flumazenil binding and postoperative outcome in hippocampal sclerosis. Epilepsia 46, 944–948 (2005).

    PubMed  Google Scholar 

  156. Rubí, S. et al. Positron emission tomography with α-[11C]methyl-L-tryptophan in tuberous sclerosis complex-related epilepsy. Epilepsia 54, 2143–2150 (2013).

    PubMed  Google Scholar 

  157. Chugani, H. T. et al. α-[11C]-Methyl-L-tryptophan–PET in 191 patients with tuberous sclerosis complex. Neurology 81, 674–680 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. O’Brien, T. J. et al. The utility of a 3-dimensional, large-field-of-view, sodium iodide crystal-based PET scanner in the presurgical evaluation of partial epilepsy. J. Nucl. Med. 42, 1158–1165 (2001).

    PubMed  Google Scholar 

  159. Mahmoud, S. B. et al. Localization of temporal epilepsy foci by subtraction ictal perfusion single photon emission computed tomography is enhanced when using 3D-OSEM iterative reconstruction. Nucl. Med. Commun. 30, 846–853 (2009).

    PubMed  Google Scholar 

  160. Elkins, K. C., Moncayo, V. M., Kim, H. & Olson, L. D. Utility of gray-matter segmentation of ictal-interictal perfusion SPECT and interictal 18F-FDG–PET in medically refractory epilepsy. Epilepsy Res. 130, 93–100 (2017).

    PubMed  Google Scholar 

  161. Shin, H. W. et al. Initial experience in hybrid PET–MRI for evaluation of refractory focal onset epilepsy. Seizure 31, 1–4 (2015).

    PubMed  Google Scholar 

  162. Kazemi, N. J. et al. Ictal SPECT statistical parametric mapping in temporal lobe epilepsy surgery. Neurology 74, 70–76 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Sulc, V. et al. Statistical SPECT processing in MRI-negative epilepsy surgery. Neurology 82, 932–939 (2014).

    PubMed  PubMed Central  Google Scholar 

  164. McNally, K. A. et al. Localizing value of ictal-interictal SPECT analyzed by SPM (ISAS). Epilepsia 46, 1450–1464 (2005).

    PubMed  Google Scholar 

  165. Wu, H. C. et al. Altered metabolomic–genomic signature: a potential noninvasive biomarker of epilepsy. Epilepsia 58, 1626–1636 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Xu, M. Y. et al. Proton MR spectroscopy in patients with structural MRI-negative temporal lobe epilepsy. J. Neuroimaging 25, 1030–1037 (2015).

    CAS  PubMed  Google Scholar 

  167. Sone, D. et al. Noninvasive detection of focal brain hyperthermia related to continuous epileptic activities using proton MR spectroscopy. Epilepsy Res. 138, 1–4 (2017).

    PubMed  Google Scholar 

  168. Song, Y. et al. Intraoperative optical mapping of epileptogenic cortices during non-ictal periods in pediatric patients. Neuroimage Clin. 11, 423–434 (2016).

    PubMed  PubMed Central  Google Scholar 

  169. Lagarde, S. et al. Interictal stereotactic-EEG functional connectivity in refractory focal epilepsies. Brain 141, 2966–2980 (2018).

    PubMed  Google Scholar 

  170. Okanishi, T. et al. Magnetoencephalography spike sources interrelate the extensive epileptogenic zone of tuberous sclerosis complex. Epilepsy Res. 127, 302–310 (2016).

    PubMed  Google Scholar 

  171. Perry, M. S. et al. Coregistration of multimodal imaging is associated with favourable two-year seizure outcome after paediatric epilepsy surgery. Epileptic Disord. 19, 40–48 (2017).

    PubMed  Google Scholar 

  172. Nowell, M. et al. Resection planning in extratemporal epilepsy surgery using 3D multimodality imaging and intraoperative MRI. Br. J. Neurosurg. 31, 468–470 (2017).

    PubMed  Google Scholar 

  173. Grouiller, F. et al. All-in-one interictal presurgical imaging in patients with epilepsy: single-session EEG/PET/(f)MRI. Eur. J. Nucl. Med. Mol. Imaging 42, 1133–1143 (2015).

    PubMed  Google Scholar 

  174. Storti, S. F. et al. Combining ESI, ASL and PET for quantitative assessment of drug-resistant focal epilepsy. Neuroimage 102, 49–59 (2014).

    CAS  PubMed  Google Scholar 

  175. Aydin, U. et al. Zoomed MRI guided by combined EEG/MEG source analysis: a multimodal approach for optimizing presurgical epilepsy work-up and its application in a multi-focal epilepsy patient case study. Brain Topogr. 30, 417–433 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Lee, S. K. et al. Surgical outcome and prognostic factors of cryptogenic neocortical epilepsy. Ann. Neurol. 58, 525–532 (2005).

    PubMed  Google Scholar 

  177. Wang, Z. I. et al. Linking MRI postprocessing with magnetic source imaging in MRI-negative epilepsy. Ann. Neurol. 75, 759–770 (2014).

    PubMed  PubMed Central  Google Scholar 

  178. Geertsema, E. E. et al. Non-harmonicity in high-frequency components of the intra-operative corticogram to delineate epileptogenic tissue during surgery. Clin. Neurophysiol. 128, 153–164 (2017).

    PubMed  Google Scholar 

  179. Fedele, T. et al. Intraoperative subdural low-noise EEG recording of the high frequency oscillation in the somatosensory evoked potential. Clin. Neurophysiol. 128, 1851–1857 (2017).

    PubMed  Google Scholar 

  180. Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to J. Gotman, J. W. Sander, S. Kalitzin, G. Widman, G. Visser, M. Demuru, K. Braun, F. Leijten, G. J. M. Huiskamp, C. Ferrier, S. van der Salm, T. Gebbink, M. van ‘t Klooster, D. van Blooijs, P. van Rijen, P. van Eijsden, P. Gosselaar, T. Souhoka, A. C. van Huffelen, A. Hillebrand and C. Stam, all of whom are members of the Dutch Collaborative Epilepsy Surgery Program (DCESP), and the 2018 fellows at the Netherlands Institute for Advanced Study in the Humanities and Social Sciences (NIAS) for their inspiration and ideas. This work was financially supported by collaborative funding of the Dutch Topsector Life Sciences & Health, the Netherlands Organisation for Scientific Research (NWO) and the Dutch Brain Foundation and Epilepsy Foundation (grant number LSHM16054-SGF). M.Z. was financially supported by the Netherlands Organisation for Scientific Research grant veni-91615149 and the Dutch L’Oréal–UNESCO NIAS For Women in Science grant. W.Z. was financially supported by the UMC Utrecht Alexandre Suerman Stipendium and N.v.K. was financially supported by the Epilepsy Foundation fund (2015–09) and the Dutch Brain Foundation (2013–139).

Peer review information

Nature Reviews Neurology thanks F. Bartolomei, C. Elger, J. Duncan and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. M.Z. wrote the first draft of the article and edited figure 2. N.v.K. edited figure 3. All authors reviewed and edited the article before submission.

Corresponding author

Correspondence to Maeike Zijlmans.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zijlmans, M., Zweiphenning, W. & van Klink, N. Changing concepts in presurgical assessment for epilepsy surgery. Nat Rev Neurol 15, 594–606 (2019). https://doi.org/10.1038/s41582-019-0224-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-019-0224-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing