Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Global epidemiology and outcomes of acute kidney injury

Abstract

Acute kidney injury (AKI) is a commonly encountered syndrome associated with various aetiologies and pathophysiological processes leading to decreased kidney function. In addition to retention of waste products, impaired electrolyte homeostasis and altered drug concentrations, AKI induces a generalized inflammatory response that affects distant organs. Full recovery of kidney function is uncommon, which leaves these patients at risk of long-term morbidity and death. Estimates of AKI prevalence range from <1% to 66%. These variations can be explained by not only population differences but also inconsistent use of standardized AKI classification criteria. The aetiology and incidence of AKI also differ between high-income and low-to-middle-income countries. High-income countries show a lower incidence of AKI than do low-to-middle-income countries, where contaminated water and endemic diseases such as malaria contribute to a high burden of AKI. Outcomes of AKI are similar to or more severe than those of patients in high-income countries. In all resource settings, suboptimal early recognition and care of patients with AKI impede their recovery and lead to high mortality, which highlights unmet needs for improved detection and diagnosis of AKI and for efforts to improve care for these patients.

Key points

  • Acute kidney injury (AKI) is a syndrome encompassing a wide variety of aetiologies and pathophysiologic processes leading to decreased kidney function.

  • The Kidney Disease: Improving Global Outcomes classification stages AKI into three levels of severity on the basis of increases in serum creatinine level, decreased urine output or need for renal replacement therapies.

  • In high-resource settings, AKI occurs in one in five hospitalized adult patients, which is approximately half of adult patients receiving intensive care, and in one in four paediatric patients receiving intensive care.

  • Each episode of AKI is associated with considerable mortality and long-term adverse outcomes, including cardiovascular complications, chronic kidney disease and end-stage renal disease.

  • In low-resource settings, AKI is often caused by environmental factors such as contaminated water and endemic infections; public health interventions are essential to decrease its incidence and complications.

  • In low-resource settings, AKI recognition, diagnosis and treatment initiation are often delayed or inadequate, leading to avoidable increases in mortality, severe complications and cost.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The spectrum of kidney disease.
Fig. 2: Comparison of different risk scores for AKI following cardiac surgery.
Fig. 3: Global variation in the incidence of AKI.

Similar content being viewed by others

References

  1. Kellum, J. A. Why are patients still getting and dying from acute kidney injury? Curr. Opin. Crit. Care 22, 513–519 (2016).

    PubMed  Google Scholar 

  2. Lameire, N. H. et al. Acute kidney injury: an increasing global concern. Lancet 382, 170–179 (2013).

    PubMed  Google Scholar 

  3. Mehta, R. L. et al. International Society of Nephrology’s 0by25 initiative for acute kidney injury (zero preventable deaths by 2025): a human rights case for nephrology. Lancet 385, 2616–2643 (2015).

    PubMed  Google Scholar 

  4. Bihorac, A. et al. Long-term risk of mortality and acute kidney injury during hospitalization after major surgery. Ann. Surg. 249, 851–858 (2009).

    PubMed  Google Scholar 

  5. Kellum, J. A., Sileanu, F. E., Bihorac, A., Hoste, E. A. & Chawla, L. S. Recovery after acute kidney injury. Am. J. Respir. Crit. Care Med. 195, 784–791 (2017).

    PubMed  PubMed Central  Google Scholar 

  6. Chawla, L. S. et al. Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat. Rev. Nephrol. 13, 241–257 (2017).

    PubMed  Google Scholar 

  7. The World Bank. How we classify countries. The World Bank http://www.worldbank.org/ (2017).

  8. Kellum, J. A. et al. Classifying AKI by urine output versus serum creatinine level. J. Am. Soc. Nephrol. 26, 2231–2238 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bellomo, R. et al. Acute renal failure — definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 8, R204–R212 (2004).

    PubMed  PubMed Central  Google Scholar 

  10. Mehta, R. L. et al. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care 11, R31 (2007).

    PubMed  PubMed Central  Google Scholar 

  11. Kidney Disease Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice guideline for acute kidney injury. Kidney Int. Suppl. 2, 1–138 (2012).

    Google Scholar 

  12. Kellum, J. A., Bellomo, R. & Ronco, C. Does this patient have acute kidney injury? An AKI checklist. Intensive Care Med. 42, 96–99 (2016).

    PubMed  Google Scholar 

  13. Kashani, K. et al. Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit. Care 17, R25 (2013).

    PubMed  PubMed Central  Google Scholar 

  14. Haase, M., Kellum, J. A. & Ronco, C. Subclinical AKI — an emerging syndrome with important consequences. Nat. Rev. Nephrol. 8, 735–739 (2012).

    CAS  PubMed  Google Scholar 

  15. De Loor, J. et al. Diagnosis of cardiac surgery-associated acute kidney injury: differential roles of creatinine, chitinase 3-like protein 1 and neutrophil gelatinase-associated lipocalin: a prospective cohort study. Ann. Intensive Care 7, 24 (2017).

    PubMed  PubMed Central  Google Scholar 

  16. Ronco, C., Bellomo, R. & Kellum, J. Understanding renal functional reserve. Intensive Care Med. 43, 917–920 (2017).

    PubMed  Google Scholar 

  17. Heung, M. et al. Common chronic conditions do not affect performance of cell cycle arrest biomarkers for risk stratification of acute kidney injury. Nephrol. Dial. Transplant. 31, 1633–1640 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsu, C. Y. et al. Community-based incidence of acute renal failure. Kidney Int. 72, 208–212 (2007).

    PubMed  PubMed Central  Google Scholar 

  19. Xu, K. et al. Unique transcriptional programs identify subtypes of AKI. J. Am. Soc. Nephrol. 28, 1729–1740 (2017).

    PubMed  Google Scholar 

  20. Susantitaphong, P. et al. World incidence of AKI: a meta-analysis. Clin. J. Am. Soc. Nephrol. 8, 1482–1493 (2013).

    PubMed  PubMed Central  Google Scholar 

  21. Yang, L. et al. Acute kidney injury in China: a cross-sectional survey. Lancet 386, 1465–1471 (2015).

    PubMed  Google Scholar 

  22. Xu, X. et al. Epidemiology and clinical correlates of AKI in chinese hospitalized adults. Clin. J. Am. Soc. Nephrol. 10, 1510–1518 (2015).

    PubMed  PubMed Central  Google Scholar 

  23. Lafrance, J. P. & Miller, D. R. Defining acute kidney injury in database studies: the effects of varying the baseline kidney function assessment period and considering CKD status. Am. J. Kidney Dis. 56, 651–660 (2010).

    PubMed  Google Scholar 

  24. Zeng, X., McMahon, G. M., Brunelli, S. M., Bates, D. W. & Waikar, S. S. Incidence, outcomes, and comparisons across definitions of AKI in hospitalized individuals. Clin. J. Am. Soc. Nephrol. 9, 12–20 (2014).

    CAS  PubMed  Google Scholar 

  25. Selby, N. M. et al. Use of electronic results reporting to diagnose and monitor AKI in hospitalized patients. Clin. J. Am. Soc. Nephrol. 7, 533–540 (2012).

    PubMed  Google Scholar 

  26. Siew, E. D. & Deger, S. M. Recent advances in acute kidney injury epidemiology. Curr. Opin. Nephrol. Hypertens. 21, 309–317 (2012).

    PubMed  PubMed Central  Google Scholar 

  27. Roberts, G. et al. Acute kidney injury risk assessment at the hospital front door: what is the best measure of risk? Clin. Kidney J. 8, 673–680 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Wiedermann, C. J., Wiedermann, W. & Joannidis, M. Hypoalbuminemia and acute kidney injury: a meta-analysis of observational clinical studies. Intensive Care Med. 36, 1657–1665 (2010).

    PubMed  PubMed Central  Google Scholar 

  29. Yu, M. Y. et al. Hypoalbuminemia at admission predicts the development of acute kidney injury in hospitalized patients: a retrospective cohort study. PLoS ONE 12, e0180750 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Wiedermann, C. J., Wiedermann, W. & Joannidis, M. Causal relationship between hypoalbuminemia and acute kidney injury. World J. Nephrol. 6, 176–187 (2017).

    PubMed  PubMed Central  Google Scholar 

  31. Lapi, F., Azoulay, L., Yin, H., Nessim, S. J. & Suissa, S. Concurrent use of diuretics, angiotensin converting enzyme inhibitors, and angiotensin receptor blockers with non-steroidal anti-inflammatory drugs and risk of acute kidney injury: nested case–control study. BMJ 346, e8525 (2013).

    PubMed  PubMed Central  Google Scholar 

  32. Yang, Y. et al. Proton-pump inhibitors use, and risk of acute kidney injury: a meta-analysis of observational studies. Drug Des. Devel. Ther. 11, 1291–1299 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Finlay, S. et al. Identification of risk factors associated with acute kidney injury in patients admitted to acute medical units. Clin. Med. 13, 233–238 (2013).

    CAS  Google Scholar 

  34. Koyner, J. L., Adhikari, R., Edelson, D. P. & Churpek, M. M. Development of a multicenter ward-based AKI prediction model. Clin. J. Am. Soc. Nephrol. 11, 1935–1943 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Hodgson, L. E. et al. Systematic review of prognostic prediction models for acute kidney injury (AKI) in general hospital populations. BMJ Open 7, e016591 (2017).

    PubMed  PubMed Central  Google Scholar 

  36. Brown, J. R. et al. Reducing contrast-induced acute kidney injury using a regional multicenter quality improvement intervention. Circ. Cardiovasc. Qual. Outcomes 7, 693–700 (2014).

    PubMed  PubMed Central  Google Scholar 

  37. Goldstein, S. L. et al. A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int. 90, 212–221 (2016).

    PubMed  Google Scholar 

  38. Uchino, S., Bellomo, R., Bagshaw, S. M. & Goldsmith, D. Transient azotaemia is associated with a high risk of death in hospitalized patients. Nephrol. Dial. Transplant. 25, 1833–1839 (2010).

    PubMed  Google Scholar 

  39. Uchino, S., Bellomo, R., Goldsmith, D., Bates, S. & Ronco, C. An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit. Care Med. 34, 1913–1917 (2006).

    PubMed  Google Scholar 

  40. Chertow, G. M., Burdick, E., Honour, M., Bonventre, J. V. & Bates, D. W. Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J. Am. Soc. Nephrol. 16, 3365–3370 (2005).

    PubMed  Google Scholar 

  41. Ali, T. et al. Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J. Am. Soc. Nephrol. 18, 1292–1298 (2007).

    CAS  PubMed  Google Scholar 

  42. Horne, K. L., Packington, R., Monaghan, J., Reilly, T. & Selby, N. M. Three-year outcomes after acute kidney injury: results of a prospective parallel group cohort study. BMJ Open 7, e015316 (2017).

    PubMed  PubMed Central  Google Scholar 

  43. Holmes, J. et al. Acute kidney injury in the era of the AKI e-alert. Clin. J. Am. Soc. Nephrol. 11, 2123–2131 (2016).

    PubMed  PubMed Central  Google Scholar 

  44. Wallace, K. et al. Use of an electronic alert to identify patients with acute kidney injury. Clin. Med. 14, 22–26 (2014).

    Google Scholar 

  45. Selby, N. M. et al. Defining the cause of death in hospitalised patients with acute kidney injury. PLoS ONE 7, e48580 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Iwagami, M., Mansfield, K., Quint, J., Nitsch, D. & Tomlinson, L. Diagnosis of acute kidney injury and its association with in-hospital mortality in patients with infective exacerbations of bronchiectasis: cohort study from a UK nationwide database. BMC Pulm. Med. 16, 14 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Thakar, C. V., Parikh, P. J. & Liu, Y. Acute kidney injury (AKI) and risk of readmissions in patients with heart failure. Am. J. Cardiol. 109, 1482–1486 (2012).

    PubMed  Google Scholar 

  48. Caddeo, G., Williams, S. T., McIntyre, C. W. & Selby, N. M. Acute kidney injury in urology patients: incidence, causes and outcomes. Nephrourol. Mon. 5, 955–961 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. Belcher, J. M. et al. Association of AKI with mortality and complications in hospitalized patients with cirrhosis. Hepatology 57, 753–762 (2013).

    CAS  PubMed  Google Scholar 

  50. Murugan, R. et al. Acute kidney injury in non-severe pneumonia is associated with an increased immune response and lower survival. Kidney Int. 77, 527–535 (2010).

    CAS  PubMed  Google Scholar 

  51. Murugan, R. et al. Association of statin use with risk and outcome of acute kidney injury in community-acquired pneumonia. Clin. J. Am. Soc. Nephrol. 7, 895–905 (2012).

    PubMed  PubMed Central  Google Scholar 

  52. Pannu, N. et al. Modification of outcomes after acute kidney injury by the presence of CKD. Am. J. Kidney Dis. 58, 206–213 (2011).

    PubMed  Google Scholar 

  53. Silver, S. A., Long, J., Zheng, Y. & Chertow, G. M. Cost of acute kidney injury in hospitalized patients. J. Hosp. Med. 12, 70–76 (2017).

    PubMed  Google Scholar 

  54. Kerr, M., Bedford, M., Matthews, B. & O’Donoghue, D. The economic impact of acute kidney injury in England. Nephrol. Dial. Transplant. 29, 1362–1368 (2014).

    PubMed  Google Scholar 

  55. Kolhe, N. V., Eldehni, M. T., Selby, N. M. & McIntyre, C. W. The reimbursement and cost of acute kidney injury: a UK hospital perspective. Nephron. Clin. Pract. 126, 51–56 (2014).

    PubMed  Google Scholar 

  56. Nisula, S. et al. Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med. 39, 420–428 (2013).

    PubMed  Google Scholar 

  57. Srisawat, N. et al. Variation in risk and mortality of acute kidney injury in critically ill patients: a multicenter study. Am. J. Nephrol. 41, 81–88 (2015).

    CAS  PubMed  Google Scholar 

  58. Hoste, E. A. et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 41, 1411–1423 (2015).

    PubMed  Google Scholar 

  59. Hoste, E. A. & De Corte, W. Implementing the Kidney Disease: Improving Global Outcomes/acute kidney injury guidelines in ICU patients. Curr. Opin. Crit. Care 19, 544–553 (2013).

    PubMed  Google Scholar 

  60. Kolhe, N. V., Muirhead, A. W., Wilkes, S. R., Fluck, R. J. & Taal, M. W. The epidemiology of hospitalised acute kidney injury not requiring dialysis in England from 1998 to 2013: retrospective analysis of hospital episode statistics. Int. J. Clin. Pract. 70, 330–339 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Waikar, S. S., Curhan, G. C., Wald, R., McCarthy, E. P. & Chertow, G. M. Declining mortality in patients with acute renal failure, 1988 to 2002. J. Am. Soc. Nephrol. 17, 1143–1150 (2006).

    PubMed  Google Scholar 

  62. Xue, J. L. et al. Incidence and mortality of acute renal failure in Medicare beneficiaries, 1992 to 2001. J. Am. Soc. Nephrol. 17, 1135–1142 (2006).

    PubMed  Google Scholar 

  63. Kolhe, N. V., Muirhead, A. W., Wilkes, S. R., Fluck, R. J. & Taal, M. W. National trends in acute kidney injury requiring dialysis in England between 1998 and 2013. Kidney Int. 88, 1161–1169 (2015).

    PubMed  Google Scholar 

  64. Wald, R. et al. Changing incidence and outcomes following dialysis-requiring acute kidney injury among critically ill adults: a population-based cohort study. Am. J. Kidney Dis. 65, 870–877 (2015).

    PubMed  Google Scholar 

  65. Ostermann, M. E., Taube, D., Morgan, C. J. & Evans, T. W. Acute renal failure following cardiopulmonary bypass: a changing picture. Intensive Care Med. 26, 565–571 (2000).

    CAS  PubMed  Google Scholar 

  66. Sileanu, F. E. et al. AKI in low-risk versus high-risk patients in intensive care. Clin. J. Am. Soc. Nephrol. 10, 187–196 (2015).

    PubMed  Google Scholar 

  67. Commereuc, M. et al. ICU patients requiring renal replacement therapy initiation: fewer survivors and more dialysis dependents from 80 years old. Crit. Care Med. 45, e772–e781 (2017).

    PubMed  Google Scholar 

  68. Hoste, E. A. et al. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit. Care 10, R73 (2006).

    PubMed  PubMed Central  Google Scholar 

  69. De Corte, W. et al. Long-term outcome in ICU patients with acute kidney injury treated with renal replacement therapy: a prospective cohort study. Crit. Care 20, 256 (2016).

    PubMed  PubMed Central  Google Scholar 

  70. Rabb, H. et al. Inflammation in AKI: current understanding, key questions, and knowledge gaps. J. Am. Soc. Nephrol. 27, 371–379 (2016).

    CAS  PubMed  Google Scholar 

  71. Ympa, Y. P., Sakr, Y., Reinhart, K. & Vincent, J. L. Has mortality from acute renal failure decreased? A systematic review of the literature. Am. J. Med. 118, 827–832 (2005).

    PubMed  Google Scholar 

  72. Bagshaw, S. M. et al. Current state of the art for renal replacement therapy in critically ill patients with acute kidney injury. Intensive Care Med. 43, 841–854 (2017).

    PubMed  Google Scholar 

  73. Vinsonneau, C. et al. Renal replacement therapy in adult and pediatric intensive care: recommendations by an expert panel from the French Intensive Care Society (SRLF) with the French Society of Anesthesia Intensive Care (SFAR) French Group for Pediatric Intensive Care Emergencies (GFRUP) the French Dialysis Society (SFD). Ann. Intensive Care 5, 58 (2015).

    PubMed  PubMed Central  Google Scholar 

  74. Schneider, A. G. et al. Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med. 39, 987–997 (2013).

    CAS  PubMed  Google Scholar 

  75. Wald, R. et al. Comparison of standard and accelerated initiation of renal replacement therapy in acute kidney injury. Kidney Int. 88, 897–904 (2015).

    CAS  PubMed  Google Scholar 

  76. Gaudry, S. et al. Initiation strategies for renal-replacement therapy in the intensive care unit. N. Engl. J. Med. 375, 122–133 (2016).

    PubMed  Google Scholar 

  77. Zarbock, A. et al. Effect of early versus delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA 315, 2190–2199 (2016).

    CAS  PubMed  Google Scholar 

  78. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01682590 (2018).

  79. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02568722 (2015).

  80. Singer, M. et al. The third international consensus definitions for sepsis and septic shock (SEPSIS-3). JAMA 315, 801–810 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Bellomo, R. et al. Acute kidney injury in sepsis. Intensive Care Med. 43, 816–828 (2017).

    CAS  PubMed  Google Scholar 

  82. Bagshaw, S. M., Bennett, M., Devarajan, P. & Bellomo, R. Urine biochemistry in septic and non-septic acute kidney injury: a prospective observational study. J. Crit. Care 28, 371–378 (2013).

    CAS  PubMed  Google Scholar 

  83. Bagshaw, S. M. et al. A prospective evaluation of urine microscopy in septic and non-septic acute kidney injury. Nephrol. Dial. Transplant. 27, 582–588 (2012).

    CAS  PubMed  Google Scholar 

  84. Bagshaw, S. M. et al. Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Med. 36, 452–461 (2010).

    CAS  PubMed  Google Scholar 

  85. Honore, P. M. et al. Urinary tissue inhibitor of metalloproteinase-2 and insulin-like growth factor-binding protein 7 for risk stratification of acute kidney injury in patients with sepsis. Crit. Care Med. 44, 1851–1860 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Matejovic, M. et al. Molecular differences in susceptibility of the kidney to sepsis-induced kidney injury. BMC Nephrol. 18, 183 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Gomez, H., Kellum, J. A. & Ronco, C. Metabolic reprogramming and tolerance during sepsis-induced AKI. Nat. Rev. Nephrol. 13, 143–151 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Uchino, S. et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294, 813–818 (2005).

    CAS  PubMed  Google Scholar 

  89. Poukkanen, M. et al. Acute kidney injury in patients with severe sepsis in Finnish intensive care units. Acta Anaesthesiol. Scand. 57, 863–872 (2013).

    CAS  PubMed  Google Scholar 

  90. Lopes, J. A. et al. Acute renal failure in patients with sepsis. Crit. Care 11, 411 (2007).

    PubMed  PubMed Central  Google Scholar 

  91. Rangel-Frausto, M. S. et al. The natural history of the systemic inflammatory response syndrome (SIRS). A prospective study. JAMA 273, 117–123 (1995).

    CAS  PubMed  Google Scholar 

  92. Lopes, J. A. et al. Acute kidney injury in patients with sepsis: a contemporary analysis. Int. J. Infect. Dis. 13, 176–181 (2009).

    PubMed  Google Scholar 

  93. Bagshaw, S. M. et al. Acute kidney injury in septic shock: clinical outcomes and impact of duration of hypotension prior to initiation of antimicrobial therapy. Intensive Care Med. 35, 871–881 (2009).

    PubMed  Google Scholar 

  94. Bagshaw, S. M. et al. Early acute kidney injury and sepsis: a multicentre evaluation. Crit. Care 12, R47 (2008).

    PubMed  PubMed Central  Google Scholar 

  95. Bagshaw, S. M. et al. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin. J. Am. Soc. Nephrol. 2, 431–439 (2007).

    PubMed  Google Scholar 

  96. Hoste, E. A. et al. Acute renal failure in patients with sepsis in a surgical ICU: predictive factors, incidence, comorbidity, and outcome. J. Am. Soc. Nephrol. 14, 1022–1030 (2003).

    PubMed  Google Scholar 

  97. Van Biesen, W. et al. Relationship between fluid status and its management on acute renal failure (ARF) in intensive care unit (ICU) patients with sepsis: a prospective analysis. J. Nephrol. 18, 54–60 (2005).

    PubMed  Google Scholar 

  98. Gordon, A. C. et al. Effect of early vasopressin versus norepinephrine on kidney failure in patients with septic shock: the VANISH randomized clinical trial. JAMA 316, 509–518 (2016).

    CAS  PubMed  Google Scholar 

  99. Gordon, A. C. et al. Levosimendan for the prevention of acute organ dysfunction in sepsis. N. Engl. J. Med. 375, 1638–1648 (2016).

    CAS  PubMed  Google Scholar 

  100. Hjortrup, P. B. et al. Restricting volumes of resuscitation fluid in adults with septic shock after initial management: the CLASSIC randomised, parallel-group, multicentre feasibility trial. Intensive Care Med. 42, 1695–1705 (2016).

    PubMed  Google Scholar 

  101. Kellum, J. A. et al. The effects of alternative resuscitation strategies on acute kidney injury in patients with septic shock. Am. J. Respir. Crit. Care Med. 193, 281–287 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Perner, A. et al. Fluid management in acute kidney injury. Intensive Care Med. 43, 807–815 (2017).

    PubMed  Google Scholar 

  103. Lai, T. S. et al. Risk of developing severe sepsis after acute kidney injury: a population-based cohort study. Crit. Care 17, R231 (2013).

    PubMed  PubMed Central  Google Scholar 

  104. Mehta, R. L. et al. Sepsis as a cause and consequence of acute kidney injury: program to improve care in acute renal disease. Intensive Care Med. 37, 241–248 (2011).

    PubMed  Google Scholar 

  105. Oppert, M. et al. Acute renal failure in patients with severe sepsis and septic shock — a significant independent risk factor for mortality: results from the German Prevalence Study. Nephrol. Dial. Transplant. 23, 904–909 (2008).

    PubMed  Google Scholar 

  106. Rodrigo, E. et al. Association between recurrence of acute kidney injury and mortality in intensive care unit patients with severe sepsis. J. Intensive Care 5, 28 (2017).

    PubMed  PubMed Central  Google Scholar 

  107. Venot, M. et al. Acute kidney injury in severe sepsis and septic shock in patients with and without diabetes mellitus: a multicenter study. PLoS ONE 10, e0127411 (2015).

    PubMed  PubMed Central  Google Scholar 

  108. Raurich, J. M. et al. Successful weaning from continuous renal replacement therapy. Associated risk factors. J. Crit. Care 45, 144–148 (2018).

    PubMed  Google Scholar 

  109. Wang, Y. et al. Renal replacement therapy intensity for acute kidney injury and recovery to dialysis independence: a systematic review and individual patient data meta-analysis. Nephrol. Dial. Transplant. 33, 1017–1024 (2018).

    PubMed  Google Scholar 

  110. Mehta, R. L. et al. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA 288, 2547–2553 (2002).

    CAS  PubMed  Google Scholar 

  111. Parikh, C. R. et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after adult cardiac surgery. J. Am. Soc. Nephrol. 22, 1748–1757 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Chertow, G. M. et al. Preoperative renal risk stratification. Circulation 95, 878–884 (1997).

    CAS  PubMed  Google Scholar 

  113. Hu, J. et al. Global incidence and outcomes of adult patients with acute kidney injury after cardiac surgery: a systematic review and meta-analysis. J. Cardiothorac. Vasc. Anesth. 30, 82–89 (2016).

    PubMed  Google Scholar 

  114. Vandenberghe, W. et al. Acute kidney injury in cardiorenal syndrome type 1 patients: a systematic review and meta-analysis. Cardiorenal Med. 6, 116–128 (2016).

    PubMed  Google Scholar 

  115. Machado, M. N., Nakazone, M. A. & Maia, L. N. Prognostic value of acute kidney injury after cardiac surgery according to kidney disease: improving global outcomes definition and staging (KDIGO) criteria. PLoS ONE 9, e98028 (2014).

    PubMed  PubMed Central  Google Scholar 

  116. Englberger, L. et al. Clinical accuracy of RIFLE and Acute Kidney Injury Network (AKIN) criteria for acute kidney injury in patients undergoing cardiac surgery. Crit. Care 15, R16 (2011).

    PubMed  PubMed Central  Google Scholar 

  117. Robert, A. M. et al. Cardiac surgery-associated acute kidney injury: a comparison of two consensus criteria. Ann. Thorac. Surg. 90, 1939–1943 (2010).

    PubMed  Google Scholar 

  118. Lagny, M. G. et al. Incidence and outcomes of acute kidney injury after cardiac surgery using either criteria of the RIFLE classification. BMC Nephrol. 16, 76 (2015).

    PubMed  PubMed Central  Google Scholar 

  119. Stafford-Smith, M., Patel, U. D., Phillips-Bute, B. G., Shaw, A. D. & Swaminathan, M. Acute kidney injury and chronic kidney disease after cardiac surgery. Adv. Chron. Kidney Dis. 15, 257–277 (2008).

    Google Scholar 

  120. Mangano, C. M. et al. Renal dysfunction after myocardial revascularization: risk factors, adverse outcomes, and hospital resource utilization. The Multicenter Study Perioperative Ischemia Research Group. Ann. Intern. Med. 128, 194–203 (1998).

    CAS  PubMed  Google Scholar 

  121. Thakar, C. V., Worley, S., Arrigain, S., Yared, J. P. & Paganini, E. P. Improved survival in acute kidney injury after cardiac surgery. Am. J. Kidney Dis. 50, 703–711 (2007).

    PubMed  Google Scholar 

  122. Yi, Q. et al. Risk factors for acute kidney injury after cardiovascular surgery: evidence from 2,157 cases and 49,777 controls — a meta-analysis. Cardiorenal Med. 6, 237–250 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Hobson, C. E. et al. Acute kidney injury is associated with increased long-term mortality after cardiothoracic surgery. Circulation 119, 2444–2453 (2009).

    PubMed  Google Scholar 

  124. Lafrance, J. P. & Miller, D. R. Acute kidney injury associates with increased long-term mortality. J. Am. Soc. Nephrol. 21, 345–352 (2010).

    PubMed  PubMed Central  Google Scholar 

  125. Machado, M. N., Nakazone, M. A. & Maia, L. N. Acute kidney injury based on KDIGO (Kidney Disease Improving Global Outcomes) criteria in patients with elevated baseline serum creatinine undergoing cardiac surgery. Rev. Bras. Cir. Cardiovasc. 29, 299–307 (2014).

    PubMed  PubMed Central  Google Scholar 

  126. Dasta, J. F., Kane-Gill, S. L., Durtschi, A. J., Pathak, D. S. & Kellum, J. A. Costs and outcomes of acute kidney injury (AKI) following cardiac surgery. Nephrol. Dial. Transplant. 23, 1970–1974 (2008).

    PubMed  Google Scholar 

  127. Najjar, M., Salna, M. & George, I. Acute kidney injury after aortic valve replacement: incidence, risk factors and outcomes. Expert Rev. Cardiovasc. Ther. 13, 301–316 (2015).

    CAS  PubMed  Google Scholar 

  128. Xu, J. R. et al. Risk factors for long-term mortality and progressive chronic kidney disease associated with acute kidney injury after cardiac surgery. Medicine 94, e2025 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Brown, J. R., Kramer, R. S., Coca, S. G. & Parikh, C. R. Duration of acute kidney injury impacts long-term survival after cardiac surgery. Ann. Thorac. Surg. 90, 1142–1148 (2010).

    PubMed  Google Scholar 

  130. Swaminathan, M. et al. Impact of early renal recovery on survival after cardiac surgery-associated acute kidney injury. Ann. Thorac. Surg. 89, 1098–1104 (2010).

    PubMed  Google Scholar 

  131. Hansen, M. K. et al. Acute kidney injury and long-term risk of cardiovascular events after cardiac surgery: a population-based cohort study. J. Cardiothorac. Vasc. Anesth. 29, 617–625 (2015).

    PubMed  Google Scholar 

  132. Hobson, C. et al. Cost and mortality associated with postoperative acute kidney injury. Ann. Surg. 261, 1207–1214 (2015).

    PubMed  Google Scholar 

  133. O’Connor, M. E., Kirwan, C. J., Pearse, R. M. & Prowle, J. R. Incidence and associations of acute kidney injury after major abdominal surgery. Intensive Care Med. 42, 521–530 (2016).

    PubMed  Google Scholar 

  134. Coca, S. G., Singanamala, S. & Parikh, C. R. Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int. 81, 442–448 (2012).

    PubMed  Google Scholar 

  135. Ryden, L., Sartipy, U., Evans, M. & Holzmann, M. J. Acute kidney injury after coronary artery bypass grafting and long-term risk of end-stage renal disease. Circulation 130, 2005–2011 (2014).

    PubMed  Google Scholar 

  136. Stacul, F. et al. Contrast induced nephropathy: updated ESUR contrast media safety committee guidelines. Eur. Radiol. 21, 2527–2541 (2011).

    PubMed  Google Scholar 

  137. Nash, K., Hafeez, A. & Hou, S. Hospital-acquired renal insufficiency. Am. J. Kidney Dis. 39, 930–936 (2002).

    PubMed  Google Scholar 

  138. Bartholomew, B. A. et al. Impact of nephropathy after percutaneous coronary intervention and a method for risk stratification. Am. J. Cardiol. 93, 1515–1519 (2004).

    PubMed  Google Scholar 

  139. Mehran, R. et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J. Am. Coll. Cardiol. 44, 1393–1399 (2004).

    PubMed  Google Scholar 

  140. Newhouse, J. H., Kho, D., Rao, Q. A. & Starren, J. Frequency of serum creatinine changes in the absence of iodinated contrast material: implications for studies of contrast nephrotoxicity. AJR Am. J. Roentgenol. 191, 376–382 (2008).

    PubMed  Google Scholar 

  141. McDonald, J. S. et al. Risk of intravenous contrast material-mediated acute kidney injury: a propensity score-matched study stratified by baseline-estimated glomerular filtration rate. Radiology 271, 65–73 (2014).

    PubMed  Google Scholar 

  142. Davenport, M. S. et al. Contrast material-induced nephrotoxicity and intravenous low-osmolality iodinated contrast material: risk stratification by using estimated glomerular filtration rate. Radiology 268, 719–728 (2013).

    PubMed  Google Scholar 

  143. McDonald, R. J. et al. Intravenous contrast material exposure is not an independent risk factor for dialysis or mortality. Radiology 273, 714–725 (2014).

    PubMed  Google Scholar 

  144. Wilhelm-Leen, E., Montez-Rath, M. E. & Chertow, G. Estimating the risk of radiocontrast-associated nephropathy. J. Am. Soc. Nephrol. 28, 653–659 (2017).

    PubMed  Google Scholar 

  145. Trivedi, H. S. et al. A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron. Clin. Pract. 93, C29–C34 (2003).

    CAS  PubMed  Google Scholar 

  146. Mueller, C. et al. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch. Intern. Med. 162, 329–336 (2002).

    CAS  PubMed  Google Scholar 

  147. Brar, S. S. et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet 383, 1814–1823 (2014).

    PubMed  Google Scholar 

  148. Nijssen, E. C. et al. Prophylactic hydration to protect renal function from intravascular iodinated contrast material in patients at high risk of contrast-induced nephropathy (AMACING): a prospective, randomised, phase 3, controlled, open-label, non-inferiority trial. Lancet 389, 1312–1322 (2017).

    PubMed  Google Scholar 

  149. Merten, G. J. et al. Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA 291, 2328–2334 (2004).

    CAS  PubMed  Google Scholar 

  150. Solomon, R. et al. Randomized trial of bicarbonate or saline study for the prevention of contrast-induced nephropathy in patients with CKD. Clin. J. Am. Soc. Nephrol. 10, 1519–1524 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Subramaniam, R. M. et al. Effectiveness of prevention strategies for contrast-induced nephropathy: a systematic review and meta-analysis. Ann. Intern. Med. 164, 406–416 (2016).

    PubMed  Google Scholar 

  152. Weisbord, S. D. et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N. Engl. J. Med. 378, 603–614 (2018).

    CAS  PubMed  Google Scholar 

  153. Solomon, R., Werner, C., Mann, D., D’Elia, J. & Silva, P. Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents. N. Engl. J. Med. 331, 1416–1420 (1994).

    CAS  PubMed  Google Scholar 

  154. Majumdar, S. R. et al. Forced euvolemic diuresis with mannitol and furosemide for prevention of contrast-induced nephropathy in patients with CKD undergoing coronary angiography: a randomized controlled trial. Am. J. Kidney Dis. 54, 602–609 (2009).

    CAS  PubMed  Google Scholar 

  155. Stone, G. W. et al. Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA 290, 2284–2291 (2003).

    CAS  PubMed  Google Scholar 

  156. Tepel, M. et al. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N. Engl. J. Med. 343, 180–184 (2000).

    CAS  PubMed  Google Scholar 

  157. Loomba, R. S., Shah, P. H., Aggarwal, S. & Arora, R. R. Role of N-acetylcysteine to prevent contrast-induced nephropathy: a meta-analysis. Am. J. Ther. 23, e172–e183 (2016).

    PubMed  Google Scholar 

  158. Weisbord, S. D. et al. Prevention of contrast-induced AKI: a review of published trials and the design of the prevention of serious adverse events following angiography (PRESERVE) trial. Clin. J. Am. Soc. Nephrol. 8, 1618–1631 (2013).

    PubMed  PubMed Central  Google Scholar 

  159. ACT Investigators. Acetylcysteine for prevention of renal outcomes in patients undergoing coronary and peripheral vascular angiography: main results from the randomized Acetylcysteine For Contrast-Induced Nephropathy Trial (ACT). Circulation 124, 1250–1259 (2011).

    Google Scholar 

  160. Han, Y. et al. Short-term rosuvastatin therapy for prevention of contrast-induced acute kidney injury in patients with diabetes and chronic kidney disease. J. Am. Coll. Cardiol. 63, 62–70 (2014).

    CAS  PubMed  Google Scholar 

  161. Leoncini, M. et al. Early high-dose rosuvastatin for contrast-induced nephropathy prevention in acute coronary syndrome: results from the PRATO-ACS study (Protective effect of Rosuvastatin and Antiplatelet Therapy on Contrast-induced acute kidney injury and myocardial damage in patients with Acute Coronary Syndrome). J. Am. Coll. Cardiol. 63, 71–79 (2014).

    CAS  PubMed  Google Scholar 

  162. Yang, Y., Wu, Y. X. & Hu, Y. Z. Rosuvastatin treatment for preventing contrast-induced acute kidney injury after cardiac catheterization: a meta-analysis of randomized controlled trials. Medicine 94, e1226 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. James, M. T. et al. Associations between acute kidney injury and cardiovascular and renal outcomes after coronary angiography. Circulation 123, 409–416 (2011).

    PubMed  Google Scholar 

  164. James, M. T. et al. Contrast-induced acute kidney injury and risk of adverse clinical outcomes after coronary angiography: a systematic review and meta-analysis. Circ. Cardiovasc. Interv. 6, 37–43 (2013).

    PubMed  Google Scholar 

  165. Goldenberg, I., Chonchol, M. & Guetta, V. Reversible acute kidney injury following contrast exposure and the risk of long-term mortality. Am. J. Nephrol. 29, 136–144 (2009).

    PubMed  Google Scholar 

  166. Subramanian, S., Tumlin, J., Bapat, B. & Zyczynski, T. Economic burden of contrast-induced nephropathy: implications for prevention strategies. J. Med. Econ. 10, 119–134 (2007).

    PubMed  Google Scholar 

  167. Aubry, P., Brillet, G., Catella, L., Schmidt, A. & Benard, S. Outcomes, risk factors and health burden of contrast-induced acute kidney injury: an observational study of one million hospitalizations with image-guided cardiovascular procedures. BMC Nephrol. 17, 167 (2016).

    PubMed  PubMed Central  Google Scholar 

  168. Akcan-Arikan, A. et al. Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int. 71, 1028–1035 (2007).

    CAS  PubMed  Google Scholar 

  169. Kwiatkowski, D. M. et al. Improved outcomes with peritoneal dialysis catheter placement after cardiopulmonary bypass in infants. J. Thorac. Cardiovasc. Surg. 149, 230–236 (2015).

    PubMed  Google Scholar 

  170. Sorof, J. M., Stromberg, D., Brewer, E. D., Feltes, T. F. & Fraser, C. D. Jr. Early initiation of peritoneal dialysis after surgical repair of congenital heart disease. Pediatr. Nephrol. 13, 641–645 (1999).

    CAS  PubMed  Google Scholar 

  171. Kwiatkowski, D. M. et al. Peritoneal dialysis versus furosemide for prevention of fluid overload in infants after cardiac surgery: a randomized clinical trial. JAMA Pediatr. 171, 357–364 (2017).

    PubMed  Google Scholar 

  172. Morgan, C. J. et al. Risk factors for and outcomes of acute kidney injury in neonates undergoing complex cardiac surgery. J. Pediatr. 162, 120–127 (2013).

    PubMed  Google Scholar 

  173. Zappitelli, M. et al. A small post-operative rise in serum creatinine predicts acute kidney injury in children undergoing cardiac surgery. Kidney Int. 76, 885–892 (2009).

    CAS  PubMed  Google Scholar 

  174. Krawczeski, C. D. et al. Temporal relationship and predictive value of urinary acute kidney injury biomarkers after pediatric cardiopulmonary bypass. J. Am. Coll. Cardiol. 58, 2301–2309 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Blinder, J. J. et al. Congenital heart surgery in infants: effects of acute kidney injury on outcomes. J. Thorac. Cardiovasc. Surg. 143, 368–374 (2012).

    PubMed  Google Scholar 

  176. Slater, M. B., Anand, V., Uleryk, E. M. & Parshuram, C. S. A systematic review of RIFLE criteria in children, and its application and association with measures of mortality and morbidity. Kidney Int. 81, 791–798 (2012).

    PubMed  Google Scholar 

  177. Schneider, J., Khemani, R., Grushkin, C. & Bart, R. Serum creatinine as stratified in the RIFLE score for acute kidney injury is associated with mortality and length of stay for children in the pediatric intensive care unit. Crit. Care Med. 38, 933–939 (2010).

    CAS  PubMed  Google Scholar 

  178. Sanchez-Pinto, L. N., Goldstein, S. L., Schneider, J. B. & Khemani, R. G. Association between progression and improvement of acute kidney injury and mortality in critically ill children. Pediatr. Crit. Care Med. 16, 703–710 (2015).

    PubMed  Google Scholar 

  179. Selewski, D. T. et al. Validation of the KDIGO acute kidney injury criteria in a pediatric critical care population. Intensive Care Med. 40, 1481–1488 (2014).

    PubMed  Google Scholar 

  180. Lex, D. J. et al. A comparison of the systems for the identification of postoperative acute kidney injury in pediatric cardiac patients. Ann. Thorac. Surg. 97, 202–210 (2014).

    PubMed  Google Scholar 

  181. Sutherland, S. M. et al. AKI in hospitalized children: epidemiology and clinical associations in a national cohort. Clin. J. Am. Soc. Nephrol. 8, 1661–1669 (2013).

    PubMed  PubMed Central  Google Scholar 

  182. Sutherland, S. M. et al. AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin. J. Am. Soc. Nephrol. 10, 554–561 (2015).

    PubMed  PubMed Central  Google Scholar 

  183. Kaddourah, A. et al. Epidemiology of acute kidney injury in critically ill children and young adults. N. Engl. J. Med. 376, 11–20 (2017).

    PubMed  Google Scholar 

  184. Mammen, C. et al. Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am. J. Kidney Dis. 59, 523–530 (2012).

    PubMed  Google Scholar 

  185. Cooper, D. S. et al. Follow-up renal assessment of injury long-term after acute kidney injury (FRAIL-AKI). Clin. J. Am. Soc. Nephrol. 11, 21–29 (2016).

    CAS  PubMed  Google Scholar 

  186. Madsen, N. L., Goldstein, S. L., Froslev, T., Christiansen, C. F. & Olsen, M. Cardiac surgery in patients with congenital heart disease is associated with acute kidney injury and the risk of chronic kidney disease. Kidney Int. 92, 751–756 (2017).

    PubMed  Google Scholar 

  187. Goldstein, S. L. et al. AKI transition of care: a potential opportunity to detect and prevent CKD. Clin. J. Am. Soc. Nephrol. 8, 476–483 (2013).

    CAS  PubMed  Google Scholar 

  188. Silver, S. A. et al. Ambulatory care after acute kidney injury: an opportunity to improve patient outcomes. Can. J. Kidney Health Dis. 2, 36 (2015).

    PubMed  PubMed Central  Google Scholar 

  189. Cerda, J., Bagga, A., Kher, V. & Chakravarthi, R. M. The contrasting characteristics of acute kidney injury in developed and developing countries. Nat. Clin. Pract. Nephrol. 4, 138–153 (2008).

    PubMed  Google Scholar 

  190. Cerda, J. et al. Epidemiology of acute kidney injury. Clin. J. Am. Soc. Nephrol. 3, 881–886 (2008).

    PubMed  Google Scholar 

  191. Mehta, R. L. et al. Recognition and management of acute kidney injury in the International Society of Nephrology 0by25 Global Snapshot: a multinational cross-sectional study. Lancet 387, 2017–2025 (2016).

    PubMed  Google Scholar 

  192. Graziani, G., de Vecchi, A. & Ponticelli, C. Urinary acidification in renal allografts. Proc. Eur. Dial. Transplant. Assoc. 11, 277–283 (1975).

    CAS  PubMed  Google Scholar 

  193. Lameire, N., Van Biesen, W. & Vanholder, R. Epidemiology of acute kidney injury in children worldwide, including developing countries. Pediatr. Nephrol. 32, 1301–1314 (2017).

    PubMed  Google Scholar 

  194. GBD 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1459–1544 (2016).

    Google Scholar 

  195. Cerda, J. et al. Acute kidney injury recognition in low- and middle-income countries. Kidney Int. Rep. 2, 530–543 (2017).

    PubMed  PubMed Central  Google Scholar 

  196. Lewington, A. J., Cerda, J. & Mehta, R. L. Raising awareness of acute kidney injury: a global perspective of a silent killer. Kidney Int. 84, 457–467 (2013).

    PubMed  PubMed Central  Google Scholar 

  197. Olowu, W. A. et al. Outcomes of acute kidney injury in children and adults in sub-Saharan Africa: a systematic review. Lancet Glob. Health 4, e242–e250 (2016).

    PubMed  Google Scholar 

  198. Goldstein, S. L., Chawla, L., Ronco, C. & Kellum, J. A. Renal recovery. Crit. Care 18, 301 (2014).

    PubMed  PubMed Central  Google Scholar 

  199. Lunyera, J., Kilonzo, K., Lewington, A., Yeates, K. & Finkelstein, F. O. Acute kidney injury in low-resource settings: barriers to diagnosis, awareness, and treatment and strategies to overcome these barriers. Am. J. Kidney Dis. 67, 834–840 (2016).

    PubMed  Google Scholar 

  200. Sitprija, V. Nephrology in South East Asia: fact and concept. Kidney Int. Suppl. 83, S128–S130 (2003).

    Google Scholar 

  201. Naicker, S., Aboud, O. & Gharbi, M. B. Epidemiology of acute kidney injury in Africa. Semin. Nephrol. 28, 348–353 (2008).

    PubMed  Google Scholar 

  202. Waikar, S. S., Betensky, R. A. & Bonventre, J. V. Creatinine as the gold standard for kidney injury biomarker studies? Nephrol. Dial. Transplant. 24, 3263–3265 (2009).

    CAS  PubMed  Google Scholar 

  203. Chu, R. et al. Assessment of KDIGO definitions in patients with histopathologic evidence of acute renal disease. Clin. J. Am. Soc. Nephrol. 9, 1175–1182 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  204. do Nascimento, G. V., Balbi, A. L., Ponce, D. & Abrao, J. M. Early initiation of dialysis: mortality and renal function recovery in acute kidney injury patients. J. Bras. Nefrol. 34, 337–342 (2012).

    PubMed  Google Scholar 

  205. Ponce, D., Berbel, M. N., Regina de Goes, C., Almeida, C. T. & Balbi, A. L. High-volume peritoneal dialysis in acute kidney injury: indications and limitations. Clin. J. Am. Soc. Nephrol. 7, 887–894 (2012).

    PubMed  Google Scholar 

  206. Burdmann, E. A. & Chakravarthi, R. Peritoneal dialysis in acute kidney injury: lessons learned and applied. Semin. Dial. 24, 149–156 (2011).

    PubMed  Google Scholar 

  207. Feehally, J. et al. Nephrology in developing countries: the ISN’s story. Lancet 383, 1271–1272 (2014).

    PubMed  Google Scholar 

  208. Finkelstein, F. O., Smoyer, W. E., Carter, M., Brusselmans, A. & Feehally, J. Peritoneal dialysis, acute kidney injury, and the Saving Young Lives program. Perit. Dial. Int. 34, 478–480 (2014).

    PubMed  PubMed Central  Google Scholar 

  209. Smoyer, W. E. et al. “Saving Young Lives” with acute kidney injury: the challenge of acute dialysis in low-resource settings. Kidney Int. 89, 254–256 (2016).

    PubMed  Google Scholar 

  210. Smoyer, W. E. et al. Saving Young Lives: provision of acute dialysis in low-resource settings. Lancet 386, 2056 (2015).

    PubMed  Google Scholar 

  211. GBD 2015 SDG Collaborators. Measuring the health-related sustainable development goals in 188 countries: a baseline analysis from the Global Burden of Disease Study 2015. Lancet 388, 1813–1850 (2016).

    Google Scholar 

  212. Mathews, S., Martin, L. J., Coetzee, D., Scott, C. & Brijmohun, Y. Child deaths in South Africa: lessons from the child death review pilot. S. Afr. Med. J. 106, 851–852 (2016).

    PubMed  Google Scholar 

  213. Moran, A. C. et al. A common monitoring framework for ending preventable maternal mortality, 2015–2030: phase I of a multi-step process. BMC Pregnancy Childbirth 16, 250 (2016).

    PubMed  PubMed Central  Google Scholar 

  214. Munamati, M., Nhapi, I. & Misi, S. Exploring the determinants of sanitation success in sub-Saharan Africa. Water Res. 103, 435–443 (2016).

    CAS  PubMed  Google Scholar 

  215. Chawla, L. S., Eggers, P. W., Star, R. A. & Kimmel, P. L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N. Engl. J. Med. 371, 58–66 (2014).

    PubMed  Google Scholar 

  216. Sawhney, S. et al. Post-discharge kidney function is associated with subsequent ten-year renal progression risk among survivors of acute kidney injury. Kidney Int. 92, 440–452 (2017).

    PubMed  PubMed Central  Google Scholar 

  217. Arias-Cabrales, C. et al. Short- and long-term outcomes after non-severe acute kidney injury. Clin. Exp. Nephrol. 22, 61–67 (2018).

    CAS  PubMed  Google Scholar 

  218. Chawla, L. S. et al. Association between AKI and long-term renal and cardiovascular outcomes in United States veterans. Clin. J. Am. Soc. Nephrol. 9, 448–456 (2014).

    PubMed  Google Scholar 

  219. Fu, H. & Liu, Y. Loss of Klotho in CKD breaks one’s heart. J. Am. Soc. Nephrol. 26, 2305–2307 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Yang, K. et al. Klotho protects against indoxyl sulphate-induced myocardial hypertrophy. J. Am. Soc. Nephrol. 26, 2434–2446 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  221. Depret, F., Prud’homme, M. & Legrand, M. A role of remote organs effect in acute kidney injury outcome? Nephron 137, 273–276 (2017).

    PubMed  Google Scholar 

  222. Wu, P. C. et al. Long-term risk of upper gastrointestinal hemorrhage after advanced AKI. Clin. J. Am. Soc. Nephrol. 10, 353–362 (2015).

    PubMed  Google Scholar 

  223. Birnie, K. et al. Predictive models for kidney disease: improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery. Crit. Care 18, 606 (2014).

    PubMed  PubMed Central  Google Scholar 

  224. Englberger, L. et al. Validation of clinical scores predicting severe acute kidney injury after cardiac surgery. Am. J. Kidney Dis. 56, 623–631 (2010).

    PubMed  Google Scholar 

  225. Mehta, R. H. et al. Bedside tool for predicting the risk of postoperative dialysis in patients undergoing cardiac surgery. Circulation 114, 2208–2216 (2006).

    PubMed  Google Scholar 

  226. Ng, S. Y. et al. Prediction of acute kidney injury within 30 days of cardiac surgery. J. Thorac. Cardiovasc. Surg. 147, 1875–1883 (2014).

    PubMed  Google Scholar 

  227. Thakar, C. V., Arrigain, S., Worley, S., Yared, J. P. & Paganini, E. P. A clinical score to predict acute renal failure after cardiac surgery. J. Am. Soc. Nephrol. 16, 162–168 (2005).

    PubMed  Google Scholar 

Download references

Reviewer information

Nature Reviews Nephrology thanks M. Joannidis, M. Ostermann and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article, wrote the manuscript, contributed substantially to discussions of the article content and participated in review and/or editing of the manuscript before submission.

Corresponding author

Correspondence to Eric A. J. Hoste.

Ethics declarations

Competing interests

E.A.J.H. declares that he has received speaker’s fees from Alexion and research grants from the University of Ghent for biomarker research. S.M.B. declares that he has received consulting fees from Baxter Healthcare and is the Canada Research Chair in Critical Care Nephrology. All other authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The World Bank: How we classify countries: http://www.worldbank.org/

International Society of Nephrology 0 by 25 Global Snapshot: http://www.0by25.org/

UN-Water: http://www.un.org/sustainabledevelopment/water-and-sanitation

UNAIDS: http://www.unaids.org

President’s Malaria Initiative: https://www.pmi.gov/home

Nothing But Nets: https://www.nothingbutnets.net

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoste, E.A.J., Kellum, J.A., Selby, N.M. et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol 14, 607–625 (2018). https://doi.org/10.1038/s41581-018-0052-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-018-0052-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing