Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integrating genomics with biomarkers and therapeutic targets to invigorate cardiovascular drug development

Abstract

Drug development in cardiovascular disease is stagnating, with lack of efficacy and adverse effects being barriers to innovation. Human genetics can provide compelling evidence of causation through approaches such as Mendelian randomization, with genetic support for causation increasing the probability of a clinical trial succeeding. Mendelian randomization applied to quantitative traits can identify risk factors for disease that are both causal and amenable to therapeutic modification. However, important differences exist between genetic investigations of a biomarker (such as HDL cholesterol) and a drug target aimed at modifying the same biomarker of interest (such as cholesteryl ester transfer protein), with implications for the methodology, interpretation and application of Mendelian randomization to drug development. Differences include the comparative nature of the genetic architecture — that is, biomarkers are typically polygenic, whereas protein drug targets are influenced by either cis-acting or trans-acting genetic variants — and the potential for drug targets to show disease associations that might differ from those of the biomarker that they are intended to modify (target-mediated pleiotropy). In this Review, we compare and contrast the use of Mendelian randomization to evaluate potential drug targets versus quantitative traits. We explain how genetic epidemiological studies can be used to assess the aetiological roles of biomarkers in disease and to prioritize drug targets, including designing their evaluation in clinical trials.

Key points

  • Mendelian randomization offers unique opportunities to explore the causal role of biomarkers and drug targets in disease aetiology.

  • A biomarker is typically a complex trait that has a polygenic architecture, whereas a drug target is usually a protein that has a distinct genetic architecture consisting of cis-acting and trans-acting variants.

  • The motivation, application and interpretation of Mendelian randomization analysis applied to complex biomarkers differ from those of Mendelian randomization analysis applied to drug targets.

  • These differences have implications for how each source of evidence contributes to insights into disease aetiology and to predicting the effects of therapies on clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DNA, proteins, complex biomarkers and disease.
Fig. 2: Applications of human genetics to the life cycle of drug development.
Fig. 3: Mendelian randomization analysis of biomarkers versus drug targets.
Fig. 4: Mendelian randomization applied to biological pathways.
Fig. 5: Pleiotropy in drug-target MR analyses.
Fig. 6: Examples of convergence and divergence of findings from MR and RCTs.
Fig. 7: Drug-target Mendelian randomization analysis using cis-acting versus trans-acting SNPs.
Fig. 8: A framework for identifying therapeutic targets.

Similar content being viewed by others

References

  1. WHO. The top 10 causes of death. https://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death (2018).

  2. WHO. Cardiovascular diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (2017).

  3. Beierlein, J. M. et al. Landscape of innovation for cardiovascular pharmaceuticals: from basic science to new molecular entities. Clin. Ther. 39, 1409–1425.e20 (2017).

    CAS  PubMed  Google Scholar 

  4. Fordyce, C. B. et al. Cardiovascular drug development: is it dead or just hibernating? J. Am. Coll. Cardiol. 65, 1567–1582 (2015).

    PubMed  Google Scholar 

  5. Darrow, J. J., Avorn, J. & Kesselheim, A. S. FDA approval and regulation of pharmaceuticals, 1983–2018. JAMA 323, 164–176 (2020).

    PubMed  Google Scholar 

  6. Wouters, O. J., McKee, M. & Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA 323, 844–853 (2020).

    PubMed  PubMed Central  Google Scholar 

  7. Harrison, R. K. Phase II and phase III failures: 2013–2015. Nat. Rev. Drug Discov. 15, 817–818 (2016).

    CAS  PubMed  Google Scholar 

  8. Alteri, E. & Guizzaro, L. Be open about drug failures to speed up research. Nature 563, 317–319 (2018).

    CAS  PubMed  Google Scholar 

  9. Dowden, H. & Munro, J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 18, 495–496 (2019).

    CAS  PubMed  Google Scholar 

  10. Davey Smith, G. & Ebrahim, S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).

    Google Scholar 

  11. Holmes, M. V., Harrison, S., Talmud, P. J., Hingorani, A. D. & Humphries, S. E. Utility of genetic determinants of lipids and cardiovascular events in assessing risk. Nat. Rev. Cardiol. 8, 207–221 (2011).

    CAS  PubMed  Google Scholar 

  12. Khera, A. V. & Kathiresan, S. Genetics of coronary artery disease: discovery, biology and clinical translation. Nat. Rev. Genet. 18, 331–344 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Davies, N. M., Holmes, M. V. & Davey Smith, G. Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362, k601 (2018).

    PubMed  PubMed Central  Google Scholar 

  14. Nelson, M. R. et al. The support of human genetic evidence for approved drug indications. Nat. Genet. 47, 856–860 (2015).

    CAS  PubMed  Google Scholar 

  15. Zheng, J. et al. Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases. Nat. Genet. 52, 1122–1131 (2020).

    PubMed  PubMed Central  Google Scholar 

  16. Lyall, D. M. et al. Association of body mass index with cardiometabolic disease in the UK biobank: a mendelian randomization study. JAMA Cardiol. 1, 882–889 (2017).

    Google Scholar 

  17. Dale, C. E. et al. Causal associations of adiposity and body fat distribution with coronary heart disease, stroke subtypes, and type 2 diabetes mellitus: a mendelian randomization analysis. Circulation 135, 2373–2388 (2017).

    PubMed  PubMed Central  Google Scholar 

  18. Emdin, C. A. et al. Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA 317, 626–634 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Holmes, M. V. et al. Causal effects of body mass index on cardiometabolic traits and events: a Mendelian randomization analysis. Am. J. Hum. Genet. 94, 198–208 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380, 572–580 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. White, J. et al. Association of lipid fractions with risks for coronary artery disease and diabetes. JAMA Cardiol. 1, 692–699 (2016).

    PubMed  PubMed Central  Google Scholar 

  22. Holmes, M. V. et al. Mendelian randomization of blood lipids for coronary heart disease. Eur. Heart J. 36, 539–550 (2015).

    CAS  PubMed  Google Scholar 

  23. Interleukin-6 Receptor Mendelian Randomisation Analysis Consortium. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 379, 1214–1224 (2012).

    Google Scholar 

  24. IL6R Genetics Consortium Emerging Risk Factors Collaboration. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213 (2012).

    PubMed Central  Google Scholar 

  25. Holmes, M. V. & Davey Smith, G. Dyslipidaemia: REVEALing the effect of CETP inhibition in cardiovascular disease. Nat. Rev. Cardiol. 14, 635–636 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ference, B. A. et al. Association of genetic variants related to CETP inhibitors and statins with lipoprotein levels and cardiovascular risk. JAMA 318, 947–956 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Harrison, S. C. et al. Genetic association of lipids and lipid drug targets with abdominal aortic aneurysm: a meta-analysis. JAMA Cardiol. 1, 26–33 (2018).

    Google Scholar 

  28. Millwood, I. Y. et al. Association of CETP gene variants with risk for vascular and nonvascular diseases among Chinese adults. JAMA Cardiol. 1, 34–43 (2018).

    Google Scholar 

  29. Holmes, M. V., Ala-Korpela, M. & Davey Smith, G. Mendelian randomization in cardiometabolic disease: challenges in evaluating causality. Nat. Rev. Cardiol. 14, 577–590 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hingorani, A. & Humphries, S. Nature’s randomised trials. Lancet 366, 1906–1908 (2005).

    PubMed  Google Scholar 

  31. Thanassoulis, G. & O’Donnell, C. J. Mendelian randomization: nature’s randomized trial in the post-genome era. JAMA 301, 2386–2388 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Plump, A. S. & Lum, P. Y. Genomics and cardiovascular drug development. J. Am. Coll. Cardiol. 53, 1089–1100 (2009).

    CAS  PubMed  Google Scholar 

  33. Hingorani, A. D. et al. Improving the odds of drug development success through human genomics: modelling study. Sci. Rep. 9, 18911 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmidt, A. F. et al. Genetic drug target validation using Mendelian randomisation. Nat. Commun. 11, 3255 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Keating, S. et al. The influence of HLA-matched sibling donor availability on treatment outcome for patients with AML: an analysis of the AML 8A study of the EORTC Leukaemia Cooperative Group and GIMEMA. Br. J. Haematol. 102, 1344–1353 (1998).

    CAS  PubMed  Google Scholar 

  36. Davies, N. M. et al. Within family Mendelian randomization studies. Hum. Mol. Genet. 28, R170–R179 (2019).

    CAS  PubMed  Google Scholar 

  37. Brumpton, B. et al. Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses. Nat. Commun. 11, 3519 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Haworth, S. et al. Apparent latent structure within the UK Biobank sample has implications for epidemiological analysis. Nat. Commun. 10, 333 (2019).

    PubMed  PubMed Central  Google Scholar 

  39. Davey Smith, G., Holmes, M. V., Davies, N. M. & Ebrahim, S. Mendel’s laws, Mendelian randomization and causal inference in observational data: substantive and nomenclatural issues. Eur. J. Epidemiol. 35, 99–111 (2020).

    PubMed  PubMed Central  Google Scholar 

  40. Burgess, S. et al. Guidelines for performing Mendelian randomization investigations. Wellcome Open Res. 4, 186 (2020).

    PubMed  PubMed Central  Google Scholar 

  41. Davey Smith, G. & Hemani, G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum. Mol. Genet. 23, R89–R98 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Cholesterol Treatment Trialists’ Collaborators. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380, 581–590 (2012).

    Google Scholar 

  43. Ference, B. A. et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease a Mendelian randomization analysis. J. Am. Coll. Cardiol. 60, 2631–2639 (2012).

    CAS  PubMed  Google Scholar 

  44. Nicholls, S. J. et al. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. JAMA 311, 252–262 (2014).

    CAS  PubMed  Google Scholar 

  45. Holmes, M. V. et al. Secretory phospholipase A2-IIA and cardiovascular disease. J. Am. Coll. Cardiol. 62, 1966–1976 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Ference, B. A. et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl. J. Med. 375, 2144–2153 (2016).

    CAS  PubMed  Google Scholar 

  47. Schmidt, A. F. et al. PCSK9 genetic variants and risk of type 2 diabetes: a Mendelian randomisation study. Lancet Diabetes Endocrinol. 5, 97–105 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. de Carvalho, L. S. F., Campos, A. M. & Sposito, A. C. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors and incident type 2 diabetes: a systematic review and meta-analysis with over 96,000 patient-years. Diabetes Care 41, 364–367 (2018).

    PubMed  Google Scholar 

  49. Mukamal, K. J., Stampfer, M. J. & Rimm, E. B. Genetic instrumental variable analysis: time to call Mendelian randomization what it is. The example of alcohol and cardiovascular disease. Eur. J. Epidemiol. 35, 93–97 (2019).

    PubMed  Google Scholar 

  50. Hartwig, F. P., Davies, N. M., Hemani, G. & Davey Smith, G. Two-sample Mendelian randomisation: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Int. J. Epidemiol. 6, 1717–1726 (2016).

    Google Scholar 

  51. Swanson, S. A., Tiemeier, H., Ikram, A. I. & Hernán, M. A. Nature as a trialist? Deconstructing the analogy between Mendelian randomization and randomized trials. Epidemiology 28, 653–659 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Ference, B. A., Holmes, M. V. & Davey Smith, G. Using Mendelian randomization to improve the design of randomized trials. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a040980 (2021).

    Article  PubMed  Google Scholar 

  53. Strimbu, K. & Tavel, J. A. What are biomarkers? Curr. Opin. HIV AIDS 5, 463–466 (2010).

    PubMed  PubMed Central  Google Scholar 

  54. Libby, P. Inflammation in atherosclerosis. Nature 420, 868–874 (2002).

    CAS  PubMed  Google Scholar 

  55. Clinton, S. K. & Libby, P. Cytokines and growth factors in atherogenesis. Arch. Pathol. Lab. Med. 116, 1292–1300 (1992).

    CAS  PubMed  Google Scholar 

  56. C Reactive Protein Coronary Heart Disease Genetics Collaboration et al. Association between C reactive protein and coronary heart disease: Mendelian randomisation analysis based on individual participant data. BMJ 342, d548 (2011).

    Google Scholar 

  57. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    CAS  PubMed  Google Scholar 

  58. Tardif, J. C. et al. Efficacy and safety of low-dose colchicine after myocardial infarction. N. Engl. J. Med. 381, 2497–2505 (2019).

    CAS  PubMed  Google Scholar 

  59. Xu, L., Borges, M. C., Hemani, G. & Lawlor, D. A. The role of glycaemic and lipid risk factors in mediating the effect of BMI on coronary heart disease: a two-step, two-sample Mendelian randomisation study. Diabetologia 60, 2210–2220 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sanderson, E., Davey Smith, G., Windmeijer, F. & Bowden, J. An examination of multivariable Mendelian randomization in the single sample and two-sample summary data settings. Int. J. Epidemiol. 48, 713–727 (2019).

    PubMed  Google Scholar 

  61. Richardson, T. G. et al. Evaluating the relationship between circulating lipoprotein lipids and apolipoproteins with risk of coronary heart disease: a multivariable Mendelian randomisation analysis. PLoS Med. 17, e1003062 (2020).

    PubMed  PubMed Central  Google Scholar 

  62. Ference, B. A. et al. Association of triglyceride-lowering LPL variants and LDL-C-lowering LDLR variants with risk of coronary heart disease. JAMA 321, 364–373 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Holmes, M. V. & Ala-Korpela, M. What is ‘LDL cholesterol’? Nat. Rev. Cardiol. 16, 197–198 (2019).

    PubMed  Google Scholar 

  64. Mitchell, G., Lesch, M. & McCambridge, J. Alcohol industry involvement in the Moderate Alcohol and Cardiovascular Health trial. Am. J. Public Health 110, 485–488 (2020).

    PubMed  PubMed Central  Google Scholar 

  65. O’Connor, A. Should we be drinking less? New York Times https://www.nytimes.com/2020/07/10/well/eat/should-we-be-drinking-less.html (2020).

  66. Millwood, I. Y. et al. Conventional and genetic evidence on alcohol and vascular disease aetiology: prospective study of 500,000 Chinese adults. Lancet 393, 1831–1842 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Holmes, M. V. et al. Association between alcohol and cardiovascular disease: Mendelian randomisation analysis based on individual participant data. BMJ 349, g4164 (2014).

    PubMed  PubMed Central  Google Scholar 

  68. Rose, G. Sick individuals and sick populations. Int. J. Epidemiol. 14, 32–38 (1985).

    CAS  PubMed  Google Scholar 

  69. Hardison, R. C. Evolution of hemoglobin and its genes. Cold Spring Harb. Perspect. Med. 2, a011627 (2012).

    PubMed  PubMed Central  Google Scholar 

  70. Prins, B. P. et al. Investigating the causal relationship of C-reactive protein with 32 complex somatic and psychiatric outcomes: a large-scale cross-consortium Mendelian randomization study. PLoS Med. 13, e1001976 (2016).

    PubMed  PubMed Central  Google Scholar 

  71. Bambauer, R., Bambauer, C., Lehmann, B., Latza, R. & Schiel, R. LDL-apheresis: technical and clinical aspects. Sci. World J. 2012, 314283 (2012).

    Google Scholar 

  72. Wurtz, P. et al. Metabolomic profiling of statin use and genetic inhibition of HMG-CoA reductase. J. Am. Coll. Cardiol. 67, 1200–1210 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Meikle, P. J. et al. Statin action favors normalization of the plasma lipidome in the atherogenic mixed dyslipidemia of MetS: potential relevance to statin-associated dysglycemia. J. Lipid Res. 56, 2381–2392 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yarmolinsky, J. et al. Association between genetically proxied inhibition of HMG-CoA reductase and epithelial ovarian cancer. JAMA 323, 646–655 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sliz, E. et al. Metabolomic consequences of genetic inhibition of PCSK9 compared with statin treatment. Circulation 138, 2499–2512 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Kettunen, J. et al. Lipoprotein signatures of cholesteryl ester transfer protein and HMG-CoA reductase inhibition. PLoS Biol. 17, e3000572 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, Q. et al. Metabolic profiling of angiopoietin-like protein 3 and 4 inhibition: a drug-target Mendelian randomization analysis. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehaa972 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Husain, M. et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 381, 841–851 (2019).

    CAS  PubMed  Google Scholar 

  79. Benatti, F. et al. Liposuction induces a compensatory increase of visceral fat which is effectively counteracted by physical activity: a randomized trial. J. Clin. Endocrinol. Metab. 97, 2388–2395 (2012).

    CAS  PubMed  Google Scholar 

  80. Mohammed, B. S., Cohen, S., Reeds, D., Young, V. L. & Klein, S. Long-term effects of large-volume liposuction on metabolic risk factors for coronary heart disease. Obesity 16, 2648–2651 (2008).

    CAS  PubMed  Google Scholar 

  81. Bovijn, J. et al. Evaluating the cardiovascular safety of sclerostin inhibition using evidence from meta-analysis of clinical trials and human genetics. Sci. Transl. Med. 12, eaay6570 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Gan, W. et al. Bone mineral density and risk of type 2 diabetes and coronary heart disease: a Mendelian randomization study. Wellcome Open Res. 2, 68 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. Armitage, J., Holmes, M. V. & Preiss, D. Cholesteryl ester transfer protein inhibition for preventing cardiovascular events. J. Am. Coll. Cardiol. 73, 477–487 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. HPS3/TIMI55-REVEAL Collaborative Group. Effects of anacetrapib in patients with atherosclerotic vascular disease. N. Engl. J. Med. 377, 1217–1227 (2017).

    Google Scholar 

  85. Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).

    CAS  PubMed  Google Scholar 

  86. Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2212 (2007).

    CAS  PubMed  Google Scholar 

  87. Sofat, R. et al. Separating the mechanism-based and off-target actions of cholesteryl ester transfer protein inhibitors with CETP gene polymorphisms. Circulation 121, 52–62 (2010).

    CAS  PubMed  Google Scholar 

  88. Dzeshka, M. S., Shahid, F., Shantsila, A. & Lip, G. Y. H. Hypertension and atrial fibrillation: an intimate association of epidemiology, pathophysiology, and outcomes. Am. J. Hypertens. 30, 733–755 (2017).

    CAS  PubMed  Google Scholar 

  89. January, C. T. et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 140, e125–e151 (2019).

    PubMed  Google Scholar 

  90. Paternoster, L., Tilling, K. M. & Davey Smith, G. Genetic epidemiology and mendelian randomization for informing disease therapeutics: conceptual and methodological challenges. PLoS Genet. 13, e1006944 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. Mahmoud, O., Dudbridge, F., Smith, G. D., Munafo, M. & Tilling, K. Slope-Hunter: a robust method for index-event bias correction in genome-wide association studies of subsequent traits. bioRxiv https://doi.org/10.1101/2020.01.31.928077 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Patel, R. S. et al. Subsequent event risk in individuals with established coronary heart disease. Circ. Genom. Precis. Med. 12, e002470 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. Deng, Y. & Pan, W. A powerful and versatile colocalization test. PLoS Comput. Biol. 16, e1007778 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    PubMed  PubMed Central  Google Scholar 

  95. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    CAS  PubMed  Google Scholar 

  96. Bovijn, J., Censin, J. C., Lindgren, C. M. & Holmes, M. V. Using human genetics to guide the repurposing of medicines. Int. J. Epidemiol. 49, 1140–1146 (2020).

    PubMed  PubMed Central  Google Scholar 

  97. Landmesser, U. et al. 2017 Update of ESC/EAS Task Force on practical clinical guidance for proprotein convertase subtilisin/kexin type 9 inhibition in patients with atherosclerotic cardiovascular disease or in familial hypercholesterolaemia. Eur. Heart J. 39, 1131–1143 (2017).

    Google Scholar 

  98. Censin, J. C. et al. Causal relationships between obesity and the leading causes of death in women and men. PLoS Genet. 15, e1008405 (2019).

    PubMed  PubMed Central  Google Scholar 

  99. Carreras-Torres, R. et al. Role of obesity in smoking behaviour: Mendelian randomisation study in UK Biobank. BMJ 361, k1767 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Audrain-McGovern, J. & Benowitz, N. L. Cigarette smoking, nicotine, and body weight. Clin. Pharmacol. Ther. 90, 164–168 (2011).

    CAS  PubMed  Google Scholar 

  101. Zheng, J. et al. Recent developments in mendelian randomization studies. Curr. Epidemiol. Rep. 4, 330–345 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Richardson, T. G., Sanderson, E., Elsworth, B., Tilling, K. & Davey Smith, G. Use of genetic variation to separate the effects of early and later life adiposity on disease risk: Mendelian randomisation study. BMJ 369, m1203 (2020).

    PubMed  PubMed Central  Google Scholar 

  103. Ference, B. A. How to use Mendelian randomization to anticipate the results of randomized trials. Eur. Heart J. 39, 360–362 (2018).

    PubMed  Google Scholar 

  104. Burgess, S. et al. Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: a mendelian randomization analysis. JAMA Cardiol. 3, 619–627 (2018).

    PubMed  PubMed Central  Google Scholar 

  105. Silverwood, R. J. et al. Testing for non-linear causal effects using a binary genotype in a Mendelian randomization study: application to alcohol and cardiovascular traits. Int. J. Epidemiol. 43, 1781–1790 (2014).

    PubMed  PubMed Central  Google Scholar 

  106. Lawlor, D. A., Harbord, R. M., Sterne, J. A., Timpson, N. & Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).

    PubMed  Google Scholar 

  107. Ference, B. A. Using genetic variants in the targets of lipid lowering therapies to inform drug discovery and development: current and future treatment options. Clin. Pharmacol. Ther. 105, 568–581 (2019).

    PubMed  Google Scholar 

  108. Bhatt, D. L. et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N. Engl. J. Med. 380, 11–22 (2019).

    CAS  PubMed  Google Scholar 

  109. Opstal, T. S. J. et al. Colchicine attenuates inflammation beyond the inflammasome in chronic coronary artery disease: a LoDoCo2 proteomic substudy. Circulation 142, 1996–1998 (2020).

    CAS  PubMed  Google Scholar 

  110. Folkersen, L. et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat. Metab. 2, 1135–1148 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Deaton, A. & Cartwright, N. Understanding and misunderstanding randomized controlled trials. Soc. Sci. Med. 210, 2–21 (2018).

    PubMed  Google Scholar 

  112. Collins, R., Bowman, L., Landray, M. & Peto, R. The magic of randomization versus the myth of real-world evidence. N. Engl. J. Med. 382, 674–678 (2020).

    PubMed  Google Scholar 

  113. Senn, S. Individual response to treatment: is it a valid assumption? BMJ 329, 966–968 (2004).

    PubMed  PubMed Central  Google Scholar 

  114. Senn, S. Statistical pitfalls of personalized medicine. Nature 563, 619–621 (2018).

    CAS  PubMed  Google Scholar 

  115. Pang, Y. et al. Adiposity, circulating protein biomarkers and risk of major vascular diseases. JAMA Cardiol. https://doi.org/10.1001/jamacardio.2020.6041 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Holmes, M. V. Human genetics and drug development. N. Engl. J. Med. 380, 1076–1079 (2019).

    PubMed  Google Scholar 

  117. Ference, B. A., Majeed, F., Penumetcha, R., Flack, J. M. & Brook, R. D. Effect of Naturally random allocation to lower low-density lipoprotein cholesterol on the risk of coronary heart disease mediated by polymorphisms in NPC1L1, HMGCR, or both. J. Am. Coll. Cardiol. 65, 1552–1561 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Collins, R. et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388, 2532–2561 (2016).

    CAS  PubMed  Google Scholar 

  119. Karjalainen, M. et al. Apolipoprotein A-I concentrations and risk of coronary artery disease: a Mendelian randomization study. Atherosclerosis 299, 53–55 (2020).

    Google Scholar 

  120. Rader, D. J. Apolipoprotein A-I infusion therapies for coronary disease: two outs in the ninth inning and swinging for the fences. JAMA Cardiol. 3, 799–801 (2018).

    PubMed  Google Scholar 

  121. Ross, S. et al. Mendelian randomization analysis supports the causal role of dysglycaemia and diabetes in the risk of coronary artery disease. Eur. Heart J. 36, 1454–1462 (2015).

    PubMed  Google Scholar 

  122. Scott, R. A. et al. A genomic approach to therapeutic target validation identifies a glucose-lowering GLP1R variant protective for coronary heart disease. Sci. Transl. Med. 8, 341ra76 (2016).

    PubMed  PubMed Central  Google Scholar 

  123. Seidelmann, S. B. et al. Genetic variants in SGLT1, glucose tolerance, and cardiometabolic risk. J. Am. Coll. Cardiol. 72, 1763–1773 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Ordelheide, A. M. et al. Common variation in the sodium/glucose cotransporter 2 gene SLC5A2 does neither affect fasting nor glucose-suppressed plasma glucagon concentrations. PLoS ONE 12, e0177148 (2017).

    PubMed  PubMed Central  Google Scholar 

  125. Look Ahead Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

    Google Scholar 

  126. Look Ahead Research Group. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 4, 913–921 (2016).

    Google Scholar 

  127. Wanner, C. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N. Engl. J. Med. 375, 323–334 (2016).

    CAS  PubMed  Google Scholar 

  128. Zinman, B. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N. Engl. J. Med. 373, 2117–2128 (2015).

    CAS  PubMed  Google Scholar 

  129. Burke, J. E. & Dennis, E. A. Phospholipase A2 structure/function, mechanism, and signaling. J. Lipid Res. 50, S237–S242 (2009).

    PubMed  PubMed Central  Google Scholar 

  130. Millwood, I. Y. et al. Lipoprotein-associated phospholipase A2 loss-of-function variant and risk of vascular diseases in 90,000 Chinese adults. J. Am. Coll. Cardiol. 67, 230–231 (2016).

    PubMed  PubMed Central  Google Scholar 

  131. Millwood, I. Y. et al. A phenome-wide association study of a lipoprotein-associated phospholipase A2 loss-of-function variant in 90 000 Chinese adults. Int. J. Epidemiol. 45, 1588–1599 (2016).

    PubMed  PubMed Central  Google Scholar 

  132. O’Donoghue, M. L. et al. Effect of darapladib on major coronary events after an acute coronary syndrome: the SOLID-TIMI 52 randomized clinical trial. JAMA 312, 1006–1015 (2014).

    PubMed  Google Scholar 

  133. Investigators, S. et al. Darapladib for preventing ischemic events in stable coronary heart disease. N. Engl. J. Med. 370, 1702–1711 (2014).

    Google Scholar 

  134. Thompson, A. et al. Association of cholesteryl ester transfer protein genotypes with CETP mass and activity, lipid levels, and coronary risk. JAMA 299, 2777–2788 (2008).

    CAS  PubMed  Google Scholar 

  135. Abbate, A. et al. Interleukin-1 and the inflammasome as therapeutic targets in cardiovascular disease. Circ. Res. 126, 1260–1280 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Silverman, M. G. et al. Association between lowering LDL-C and cardiovascular risk reduction among different therapeutic interventions: a systematic review and meta-analysis. JAMA 316, 1289–1297 (2016).

    CAS  PubMed  Google Scholar 

  137. Cholesterol Treatment Trialists’ (CTT) Collaboration. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet 385, 1397–1405 (2015).

    Google Scholar 

  138. Cholesterol Treatment Trialists’ (CTT) Collaboration. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 376, 1670–1681 (2010).

    Google Scholar 

  139. Mokry, L. E. et al. Vitamin D and risk of multiple sclerosis: a mendelian randomization study. PLoS Med. 12, e1001866 (2015).

    PubMed  PubMed Central  Google Scholar 

  140. Ridker, P. M. et al. Lipid-reduction variability and antidrug-antibody formation with bococizumab. N. Engl. J. Med. 376, 1517–1526 (2017).

    CAS  PubMed  Google Scholar 

  141. Holmes, M. V. & Davey Smith, G. Can mendelian randomization shift into reverse gear? Clin. Chem. 65, 363–366 (2019).

    CAS  PubMed  Google Scholar 

  142. Gaulton, A. et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 40, D1100–D1107 (2012).

    CAS  PubMed  Google Scholar 

  143. Hemani, G. et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife 7, e34408 (2018).

    PubMed  PubMed Central  Google Scholar 

  144. Elsworth, B. et al. The MRC IEU OpenGWAS data infrastructure. bioRxiv https://doi.org/10.1101/2020.08.10.244293 (2020).

    Article  Google Scholar 

  145. Doherty, A. et al. GWAS identifies 14 loci for device-measured physical activity and sleep duration. Nat. Commun. 9, 5257 (2018).

    PubMed  PubMed Central  Google Scholar 

  146. Tillmann, T. et al. Education and coronary heart disease: mendelian randomisation study. BMJ 358, j3542 (2017).

    PubMed  PubMed Central  Google Scholar 

  147. Carter, A. R. et al. Understanding the consequences of education inequality on cardiovascular disease: Mendelian randomisation study. BMJ 365, l1855 (2019).

    PubMed  PubMed Central  Google Scholar 

  148. Kettunen, J. et al. Genome-wide study for circulating metabolites identifies 62 loci and reveals novel systemic effects of LPA. Nat. Commun. 7, 11122 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Wurtz, P. et al. Metabolic signatures of adiposity in young adults: Mendelian randomization analysis and effects of weight change. PLoS Med. 11, e1001765 (2014).

    PubMed  PubMed Central  Google Scholar 

  151. Labos, C., Brophy, J. M., Smith, G. D., Sniderman, A. D. & Thanassoulis, G. Evaluation of the Pleiotropic effects of statins: a reanalysis of the randomized trial evidence using egger regression-brief report. Arterioscler. Thromb. Vasc. Biol. 38, 262–265 (2018).

    CAS  PubMed  Google Scholar 

  152. Emdin, C. A. et al. Genome-wide polygenic score and cardiovascular outcomes with evacetrapib in patients with high-risk vascular disease: a nested case-control study. Circ. Genom. Precis. Med. 13, e002767 (2020).

    PubMed  PubMed Central  Google Scholar 

  153. Holmes, M. V., Perel, P., Shah, T., Hingorani, A. D. & Casas, J. P. CYP2C19 genotype, clopidogrel metabolism, platelet function, and cardiovascular events: a systematic review and meta-analysis. JAMA 306, 2704–2714 (2011).

    CAS  PubMed  Google Scholar 

  154. Baigent, C. & Holmes, M. V. Variability in aspirin efficacy: all in the genes? Eur. Heart J. 40, 3393–3396 (2019).

    PubMed  PubMed Central  Google Scholar 

  155. Haycock, P. C. et al. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am. J. Clin. Nutr. 103, 965–978 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Davey Smith, G. et al. STROBE-MR: guidelines for strengthening the reporting of Mendelian randomization studies. PeerJ Preprints https://doi.org/10.7287/peerj.preprints.27857v1 (2019).

    Article  Google Scholar 

  157. Burgess, S. et al. Using published data in Mendelian randomization: a blueprint for efficient identification of causal risk factors. Eur. J. Epidemiol. 30, 543–552 (2015).

    PubMed  PubMed Central  Google Scholar 

  158. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    PubMed Central  Google Scholar 

  159. Musunuru, K. et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466, 714–719 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Porcu, E. et al. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. Nat. Commun. 10, 3300 (2019).

    PubMed  PubMed Central  Google Scholar 

  161. Kibinge, N. K., Relton, C. L., Gaunt, T. R. & Richardson, T. G. Characterizing the causal pathway for genetic variants associated with neurological phenotypes using human brain-derived proteome data. Am. J. Hum. Genet. 106, 885–892 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Suvarna, V. R. Real world evidence (RWE) - are we (RWE) ready? Perspect. Clin. Res. 9, 61–63 (2018).

    PubMed  PubMed Central  Google Scholar 

  163. Wainberg, M. et al. Homogeneity in the association of body mass index with type 2 diabetes across the UK Biobank: a Mendelian randomization study. PLoS Med. 16, e1002982 (2019).

    PubMed  PubMed Central  Google Scholar 

  164. North, T. L. et al. Using genetic instruments to estimate interactions in mendelian randomization studies. Epidemiology 30, e33–e35 (2019).

    PubMed  Google Scholar 

  165. Xu, Z. M. & Burgess, S. Polygenic modelling of treatment effect heterogeneity. Genet. Epidemiol. 44, 868–879 (2020).

    PubMed  Google Scholar 

  166. Chaturvedi, N. Ethnic differences in cardiovascular disease. Heart 89, 681–686 (2003).

    PubMed  PubMed Central  Google Scholar 

  167. Winkleby, M. A., Kraemer, H. C., Ahn, D. K. & Varady, A. N. Ethnic and socioeconomic differences in cardiovascular disease risk factors: findings for women from the Third National Health and Nutrition Examination Survey, 1988–1994. JAMA 280, 356–362 (1998).

    CAS  PubMed  Google Scholar 

  168. NIH Office of Research on Women’s Health. Including women and minorities in clinical research background. https://orwh.od.nih.gov/womens-health/clinical-research-trials/nih-inclusion-policies/including-women-and-minorities (2020).

  169. Tamargo, J. et al. Gender differences in the effects of cardiovascular drugs. Eur. Heart J. Cardiovasc. Pharmacother. 3, 163–182 (2017).

    CAS  PubMed  Google Scholar 

  170. Censin, J. C., Bovijn, J., Holmes, M. V. & Lindgren, C. M. Commentary: Mendelian randomization and women’s health. Int. J. Epidemiol. 48, 830–833 (2019).

    PubMed  PubMed Central  Google Scholar 

  171. Mills, M. C. & Rahal, C. A scientometric review of genome-wide association studies. Commun. Biol. 2, 9 (2019).

    PubMed  PubMed Central  Google Scholar 

  172. Pirastu, N. et al. Genetic analyses identify widespread sex-differential participation bias. bioRxiv https://doi.org/10.1101/2020.03.22.001453 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

M.V.H. works in a unit that receives funding from the UK Medical Research Council (MRC) and is supported by a British Heart Foundation Intermediate Clinical Research Fellowship (FS/18/23/33512) and the National Institute for Health Research Oxford Biomedical Research Centre. The MRC and the University of Bristol support the MRC Integrative Epidemiology Unit (MC_UU_00011/1). T.G.R. is a UKRI Innovation Research Fellow (MR/S003886/1). B.A.F. is supported by the National Institute for Health Research Cambridge Biomedical Research Centre at the Cambridge University Hospitals NHS Foundation Trust. N.M.D. is supported by a Norwegian Research Council Grant number 295989.

Author information

Authors and Affiliations

Authors

Contributions

M.V.H. conceived the idea for the article, researched data for the article, led discussions of the content, wrote the first draft of the article and reviewed and/or edited the manuscript before submission. T.G.R., N.M.D. and G.D.S. contributed to discussion of the content and reviewed and/or edited the article before submission. B.A.F. contributed to discussions of the content and reviewed the manuscript before submission.

Corresponding author

Correspondence to Michael V. Holmes.

Ethics declarations

Competing interests

M.V.H. has collaborated with Boehringer Ingelheim in research and, in adherence to the University of Oxford’s Clinical Trial Service Unit & Epidemiological Studies Unit (CSTU) staff policy, has not accepted personal honoraria or other payments from pharmaceutical companies. B.A.F. reports receiving grants and personal fees from Amgen and Merck; grants from Esperion Therapeutics and Novartis; and personal fees from CiVi Biopharma, dalCOR, Eli Lilly, Ionis Pharmaceuticals, Krka Pharmaceuticals, Medicines Company, Mylan, Novo Nordisk, Pfizer, Regeneron, Sanofi, Silence Therapeutics, the American College of Cardiology, the European Atherosclerosis Society and the Physicians Academy for Continuing Education. N.M.D. reports funding from the Global Research Awards into Nicotine Dependence (GRAND), which is an independent grant-awarding body funded by Pfizer. G.D.S. has received research support from Biogen and GSK. T.G.R. declares no competing interests.

Additional information

Peer review information

Nature Reviews Cardiology thanks S. Burgess and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ChEMBL: https://www.ebi.ac.uk/chembl/

GENIUS-CHD: http://www.genius-chd.com/

MR-Base: https://www.mrbase.org/

OpenTargets: https://www.opentargets.org/

Glossary

Biomarkers

Biological markers that can be objectively quantified and which provide an indication of an underlying biological process.

Drug target

A molecular entity, typically a protein, that a drug modifies in order to exert a therapeutic effect.

Polygenic traits

Traits for which more than one gene is responsible for variation in the phenotype.

Horizontal pleiotropy

Features of a genetic instrument indicative of associations with traits other than the exposure of interest or its downstream causal pathway.

Mendel’s second law of independent assortment

During meiosis, assortment of alleles at a locus occurs independently of the assortment of alleles at another locus, provided there is no linkage between the loci.

Mendel’s first law of segregation

During meiosis, only one set from a pair of homologous chromosomes is transmitted to each gamete.

Dynastic effects

Where parental genotype modifies outcomes in the offspring through mechanisms unrelated to offspring genotype.

Time zero

The time at which an individual enters an interventional study and is allocated a treatment strategy; in the case of Mendelian randomization, time zero is conception.

Multivariable MR

(Multivariable Mendelian randomization). Includes multiple exposures simultaneously in a model, including their genetic instruments, permitting synthesis of direct causal effects.

Vertical pleiotropic effects

Features of a genetic instrument indicative of an association with traits downstream of the primary exposure of interest.

Instrumental variables

Variables that associate with the exposure, but have no common cause with the outcome, and only affect the outcome via the exposure, thereby permitting, under certain circumstances, estimation of causal effects.

Cis-acting variants

Genetic variants within or close to the protein-encoding gene that are more likely to exert protein-specific effects.

Trans-acting variants

Genetic variants that are not at or near the protein-encoding gene and are more likely to have pleiotropic effects.

Target-mediated pleiotropy

Features of a drug target leading to phenotypic effects that differ from those arising from the downstream complex biomarker.

Exclusion restriction

The principle by which an instrumental variable exerts its effect on the outcome of interest solely through the exposure.

Linkage disequilibrium

Genetic variants that are close together in the genome tend to be more likely to be inherited together, yielding a phenomenon termed linkage disequilibrium.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holmes, M.V., Richardson, T.G., Ference, B.A. et al. Integrating genomics with biomarkers and therapeutic targets to invigorate cardiovascular drug development. Nat Rev Cardiol 18, 435–453 (2021). https://doi.org/10.1038/s41569-020-00493-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41569-020-00493-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research